词条 | 核辐射探测器 |
释义 | 核辐射探测器是指能够指示、记录和测量核辐射的材料或装置。辐射和核辐射探测器内的物质相互作用而产生某种信息(如电、光脉冲或材料结构的变化),经放大后被记录、分析,以确定粒子的数目、位置、能量、动量、飞行时间、速度、质量等物理量。核辐射探测器是核物理、粒子物理研究及辐射应用中不可缺少的工具和手段。按照记录方式,核辐射探测器大体上分为计数器和径迹室两大类。 词条释义简介nuclear radiation detector 又称核探测元件(nuclear detection element)。是探测辐射射线用的器件。常用的有电离室、计数管和闪烁计数器、原子核乳胶、固体核径迹探测器和半导体探测器等。 这类探测元件可以测量辐射射线和它们的性质。其原理主要是利用射线与物质相互作用时所产生的多种效应。如应用带电粒子与物质作用产生电离的原理制作的电离室、计数管,以及α径迹探测器等;利用其荧光作用做成的闪烁计数器;利用电离和激发所引起的化学反应过程制作原子核乳胶,固体核径迹探测器等。对带电离子可直接应用上述性质,对不带电的粒子(如γ射线),则应用其与物质作用的三种效应(光电效应、康普顿-吴有训效应、电子对效应)所产生的二次电子来达到上述目的。 计数器以电脉冲的形式记录、分析辐射产生的某种信息。计数器的种类有气体电离探测器、多丝室和漂移室、半导体探测器、闪烁计数器和切伦科夫计数器等。 气体电离探测器通过收集射线在气体中产生的电离电荷来测量核辐射。主要类型有电离室、正比计数器和盖革计数器。它们的结构相似,一般都是具有两个电极的圆筒状容器,充有某种气体,电极间加电压,差别是工作电压范围不同。电离室工作电压较低,直接收集射线在气体中原始产生的离子对。其输出脉冲幅度较小,上升时间较快,可用于辐射剂量测量和能谱测量。正比计数器的工作电压较高,能使在电场中高速运动的原始离子产生更多的离子对,在电极上收集到比原始离子对要多得多的离子对(即气体放大作用),从而得到较高的输出脉冲。脉冲幅度正比于入射粒子损失的能量,适于作能谱测量。盖革计数器又称盖革-弥勒计数器或G-M计数器,它的工作电压更高,出现多次电离过程,因此输出脉冲的幅度很高,已不再正比于原始电离的离子对数,可以不经放大直接被记录。它只能测量粒子数目而不能测量能量,完成一次脉冲计数的时间较长。 多丝室和漂移室 这是正比计数器的变型。既有计数功能,还可以分辨带电粒子经过的区域。多丝室有许多平行的电极丝,处于正比计数器的工作状态。每一根丝及其邻近空间相当于一个探测器,后面与一个记录仪器连接。因此只有当被探测的粒子进入该丝邻近的空间,与此相关的记录仪器才记录一次事件。为了减少电极丝的数目,可从测量离子漂移到丝的时间来确定离子产生的部位,这就要有另一探测器给出一起始信号并大致规定了事件发生的部位,根据这种原理制成的计数装置称为漂移室,它具有更好的位置分辨率(达50微米),但允许的计数率不如多丝室高。 半导体探测器 辐射在半导体中产生的载流子(电子和空穴),在反向偏压电场下被收集,由产生的电脉冲信号来测量核辐射。常用硅、锗做半导体材料,主要有三种类型:①在n型单晶上喷涂一层金膜的面垒型;②在电阻率较高的 p型硅片上扩散进一层能提供电子的杂质的扩散结型;③在p型锗(或硅)的表面喷涂一薄层金属锂后并进行漂移的锂漂移型。高纯锗探测器有较高的能量分辨率,对γ辐射探测效率高,可在室温下保存,应用广泛。砷化镓、碲化镉、碘化汞等材料也有应用。 闪烁计数器 通过带电粒子打在闪烁体上,使原子(分子)电离、激发,在退激过程中发光,经过光电器件(如光电倍增管)将光信号变成可测的电信号来测量核辐射。闪烁计数器分辨时间短、效率高,还可根据电信号的大小测定粒子的能量。闪烁体可分三大类:①无机闪烁体,常见的有用铊(Tl)激活的碘化钠NaI(Tl)和碘化铯CsI(Tl)晶体,它们对电子、γ辐射灵敏,发光效率高,有较好的能量分辨率,但光衰减时间较长;锗酸铋晶体密度大,发光效率高,因而对高能电子、γ辐射探测十分有效。其他如用银 (Ag)激活的硫化锌ZnS(Ag)主要用来探测α粒子;玻璃闪烁体可以测量α粒子、低能X辐射,加入载体后可测量中子;氟化钡 (BaF2)密度大,有荧光成分,既适合于能量测量,又适合于时间测量。②有机闪烁体,包括塑料、液体和晶体(如蒽、茋等),前两种使用普遍。由于它们的光衰减时间短(2~3纳秒,快塑料闪烁体可小于1纳秒),常用在时间测量中。它们对带电粒子的探测效率将近百分之百。③气体闪烁体,包括氙、氦等惰性气体,发光效率不高,但光衰减时间较短(<10纳秒)。 切伦科夫计数器 高速带电粒子在透明介质中的运动速度超过光在该介质中的运动速度时,则会产生切伦科夫辐射,其辐射角与粒子速度有关,因此提供了一种测量带电粒子速度的探测器。此类探测器常和光电倍增管配合使用;可分为阈式(只记录大于某一速度的粒子)和微分式(只选择某一确定速度的粒子)两种。 除上述常用的几种计数器外,还有气体正比闪烁室、自猝灭流光计数器,都是近期出现的气体探测器,输出脉冲幅度大,时间特性好。电磁量能器(或簇射计数器)及强子量能器可分别测量高能电子、γ辐射或强子(见基本粒子)的能量。穿越辐射计数器为极高能带电粒子的鉴别提供了途径。 径迹室通过记录、分析辐射产生的径迹图象测量核辐射。主要种类有核乳胶、云室和泡室、火花室和流光室、固体径迹探测器。 核乳胶 能记录带电粒子单个径迹的照相乳胶。入射粒子在乳胶中形成潜影中心,经过化学处理后记录下粒子径迹,可在显微镜下观察。它有极佳的位置分辨本领(1微米),阻止本领大,功用连续而灵敏。 云室和泡室 使入射粒子产生的离子集团在过饱和蒸气中形成冷凝中心而结成液滴(云室),在过热液体中形成气化中心而变成气泡(泡室),用照相方法记录,使带电粒子的径迹可见。泡室有较好的位置分辨率(好的可达10微米),本身又是靶,目前常以泡室为顶点探测器配合计数器一起使用。 火花室和流光室 这些装置都需要较高的电压,当粒子进入装置产生电离时,离子在强电场下运动,形成多次电离,增殖很快,多次电离过程中先产生流光,后产生火花,使带电粒子的径迹成为可见。流光室具有较好的时间特性。它们都具有较好的空间分辨率(约 200微米)。除了可用照相记录粒子径迹外,还可记录电脉冲信号,作为计数器用。 固体径迹探测器 重带电粒子打在诸如云母、塑料一类材料上,沿路径产生损伤,经过化学处理(蚀刻)后,将损伤扩大成可在显微镜下观察的空洞,适于探测重核。 由许多类型的探测器、磁铁、电子仪器、计算机等组成的辐射谱仪,可获得多种物理信息,是近代核物理及粒子探测的发展趋势。 图书《核辐射探测器》基本信息书名:核辐射探测器 [平装]丛 书: 国防特色教材·核科学与技术 作 者: 丁洪林 书 号: 9787811334296 出 版 社: 哈尔滨工程大学出版社,北京航空航天大学出版社,北京理工大学出版社,西北工业大学出版社,哈尔滨工业大学出版社 出版日期: 2010-4-1 定 价: 68.0 元 内容简介《核辐射探测器》是编著者在几十年半导体辐射探测器的研究开发和给研究生讲授核辐射探测器的基础上编写成的。《核辐射探测器》首先介绍了核辐射探测器的发展和近十几年来的新进展,介绍了辐射源、射线与物质相互作用等基础知识;重点介绍了核辐射探测器的工作原理、工艺原理和工艺、探测器特性、结构及其应用;然后介绍了核辐射探测器在实验核物理、粒子物理、堆物理中的应用,能量测量和在不同能量范围如何正确选择和使用核辐射探测器;以及在核辐射强度和辐射剂量测量中的应用,阵列探测器构成的核成像探测器及其应用,脉冲辐射探测器和脉冲辐射的探测,核辐射探测器在工业自动化控制、核燃耗测量、核保障和对特殊核素监控中的应用,在x射线荧光分析、环保生态学中的应用,在探测空间辐射、空间物理、天体物理研究中的应用,以及在核废物处理和核医学中的应用等。 《核辐射探测器》主要作为与核相关的研究生的教材,也可作为核物理和有关放射性测量等专业的学生学习和参考,也可供从事相关专业的科研、生产、应用的工程技术人员阅读。 本书目录第1章 绪论 1.1 核探测技术在核科学研究、核试验测试、核技术应用中的作用与地位 1.2 核辐射探测器的发展及其应用简介 第2章 核辐射和核辐射探测的原理和方法 2.1 核辐射的基本性质 2.2 探测带电粒子的物理基础及常用的带电粒子探测器 2.3 X,y射线的探测原理及常用的核辐射探测器 2.4 中子的探测方法 第3章 气体探测器 3.1 气体探测器的原理 3.2 电离室 3.3 电流电离室和累计电离室 3.4 正比计数管及其应用 3.5 G-M计数管 3.6 气体多丝正比室和漂移室 3.7 高气压电离室和高气压氙电离室 第4章 闪烁探测器 4.1 闪烁探测器的构成和工作原理 4.2 闪烁体 4.3 闪烁体的特性参数 4.4 无机闪烁体的种类和它的物理参数 4.5 常用的有机闪烁体 4.6 闪烁体的选择 4.7 光学收集系统 4.8 闪烁探测器的工作特性 4.9 闪烁探测器的坪特性 4.10 闪烁体探测器的应用 第5章 半导体探测器 5.1 半导体的基础知识 5.2 本征半导体 5.3 N型半导体和P型半导体 5.4 载流子 5.5 半导体探测器对半导体材料的要求和它的基本工作原理 5.6 用于制备核辐射探测器的硅、锗和化合物半导体材料 5.7 半导体探测器的工作原理、制备工艺 5.8 半导体探测器的结构和基本类型 第6章 硅探测器 6.1 硅核辐射探测器的种类 6.2 P—N结的形成 6.3 硅半导体探测器的各种特性参数 6.4 核辐射探测特性参数 第7章 硅锂漂移探测器 7.1 锂漂移探测器I0区(灵敏区)的形成(补偿区的制备) 7.2 锂漂移探测器的分类 7.3 硅锂漂移探测器的特性参数 7.4 半导体x射线探测器的选择及其性能和特点 7.5 x射线能谱测量和数据图表 7.6 硅锂漂移x射线谱仪的应用 第8章 特殊类型的半导体探测器 8.1 全耗尽探测器 8.2 位置灵敏探测器 8.3 硅漂移室SDC和电荷耦合探测器(CCD) 8.4 内放大探测器(或雪崩倍增放大器) 8.5 P—I—N电流型探测器 8.6 夹心(夹层)型半导体中子探测器 8.7 匀质体电导型——无结型器件 8.8 MOS—C探测器 8.9 高分辨率网栅型Au-si表面势垒探测器 8.10 光电导探测器和光电二极管探测器 8.11 环形金硅面垒探测器 第9章 高纯锗探测器 9.1 HPGe探测器的结构 9.2 HPGe探测器的电场和电容 9.3 HWGe探测器灵敏区和死层 9.4 HPGe探测器的能量分辨率 9.5 HPGe探测器的探测效率 9.6 峰面积、频谱本底、谱峰极大值和峰康比 9.7 锗探测器的时间特性 9.8 辐射损伤 9.9 锗射线探测器的应用 9.10 锗y射线探测器测试方法 第10章 化合物半导体探测器 10.1 概述 10.2 砷化镓(GaAs)核辐射探测器 10.3 碲化镉(CdTe)核辐射探测器 10.4 碲锌镉核辐射探测器 10.5 碘化汞(Hgl2)核辐射探测器 第11章 低温量热和超导体核辐射探测器 11.1 低温量热核辐射探测器 11.2 低温超导体核辐射探测器 11.3 超导体和低温量热核辐射探测器的应用 11.4 展望 第12章 其他核辐射探测器 12.1 切伦科夫探测器 12.2 热释光探测器 12.3 径迹探测器 12.4 康普顿二极管 12.5 自给能探测器 12.6 液体电离室 12.7 气体正比闪烁探测器 12.8 穿越辐射探测器 第13章 探测器的本底和屏蔽 13.1 本底来源 13.2 降低本底的方法 第14章 核辐射探测器的应用 14.1 概述 14.2 实验核物理中用于粒子鉴别的核辐射探测器 14.3 核辐射探测器在反应堆(核电站)上的应用 14.4 核辐射探测器在核能谱(核辐射能量)测量中的应用 14.5 探测和测量脉冲辐射束的探测器 14.6 核辐射探测器在核辐射强度和辐射剂量测量中的应用 14.7 核辐射探测器在核成像和其他研究领域中的应用 14.8 探测器在核保障、核材料生产、加工处理中的监测和核电站燃料燃耗的测量 14.9 x射线荧光分析用核辐射探测器和x射线荧光分析的应用 14.10 核辐射探测器在宇宙空间天体物理领域的应用 14.11 核辐射探测器在核医学和临床医学中的应用 附录 参考文献 |
随便看 |
百科全书收录4421916条中文百科知识,基本涵盖了大多数领域的百科知识,是一部内容开放、自由的电子版百科全书。