词条 | 核电站类型 |
释义 | 核能知识 1. 原子及原子核 世界上的一切物质都是由带正电的原子核和绕原子核旋转的带负电的电子构成的。原子核包括质子和中子,质子数决定了该原子属于何种元素,原子的质量数等于质子数和中子数之和。如一个铀-235原子是由原子核(由92个质子和143个中子组成)和92个电子构成的。如果把原子看作是我们生活的地球,那么原子核就相当于一个乒乓球的大小。虽然原子核的体积很小,但在一定条件下它却能释放出惊人的能量。 2. 同位素 质子数相同而中子数不同或者说原子序数相同而原子质量数不同的一些原子被称为同位素,它们在化学元素周期表上占据同一个位置。简单的说同位素就是指某个元素的各种原子,它们具有相同的化学性质。按质量不同通常可以分为重同位素和轻同位素。 3. 铀的同位素 铀是自然界中原子序数最大的元素。天然铀的同位素主要是铀-238和铀-235,它们所占的比例分别为99.3%和0.7%。除此之外,自然界中还有微量的铀-234。铀-235原子核完全裂变放出的能量是同量煤完全燃烧放出能量的2700000倍。 4. 核能及其获取途径 核能,是核裂变能的简称。50多年以前,科学家在的一次试验中发现铀-235原子核在吸收一个中子以后能分裂,在放出2—3个中子的同时伴随着一种巨大的能量,这种能量比化学反应所释放的能量大的多,这就是我们今天所说的核能。核能的获得途径主要有两种,即重核裂变与轻核聚变。核聚变要比核裂变释放出更多的能量。例如相同数量的氘和铀-235分别进行聚变和裂变,前者所释放的能量约为后者的三倍多。被人们所熟悉的原子弹、核电站、核反应堆等等都利用了核裂变的原理。只是实现核聚变的条件要求的较高,即需要使氢核处于几千万度以上的高温才能使相当的核具有动能实现聚合反应。 5. 重核裂变 重核裂变是指一个重原子核,分裂成两个或多个中等原子量的原子核,引起链式反应,从而释放出巨大的能量。例如,当用一个中子轰击U-235的原子核时,它就会分裂成两个质量较小的原子核,同时产生2—3个中子和β、γ等射线,并释放出约200兆电子伏特的能量。 如果再有一个新产生的中子去轰击另一个铀-235原子核,便引起新的裂变,以此类推,裂变反应不断地持续下去,从而形成了裂变链式反应,与此同时,核能也连续不断地释放出来。 6. 轻核聚变 所谓轻核聚变是指在高温下(几百万度以上)重氢核(氘核)与超重氢核(氘核)结合成氦放出大量能量的过程,也称热核反应。它是取得核能的重要途径之一。由于原子核间有很强的静电排斥力,因此在一般的温度和压力下,很难发生聚变反应。而在太阳等恒星内部,压力和温度都极高,所以就使得轻核有了足够的动能克服静电斥力而发生持续的聚变。自持的核聚变反应必须在极高的压力和温度下进行,故称为"热核聚变反应"。 氢弹是利用氘、氚原子核的聚变反应瞬间释放巨大能量这一原理制成的,但它释放能量有着不可控性,所以有时造成了极大的杀伤破坏作用。目前正在研制的"受控热核聚变反应装置"也是应用了轻核聚变原理,由于这种热核反应是人工控制的,因此可用作能源。 7. 一种新能源—核电站 目前化石燃料在能源消耗中所占的比重仍处于绝对优势,但此种能源不仅燃烧利用率低,而且污染环境,它燃烧所释放出来的二氧化碳等有害气体容易造成 "温室效应",使地球气温逐年升高,造成气候异常,加速土地沙漠化过程,给社会经济的可持续发展带来严重影响。与火电厂相比,核电站是非常清洁的能源,不排放这些有害物质也不会造成"温室效应",因此能大大改善环境质量,保护人类赖以生存的生态环境。 世界上核电国家的多年统计资料表明,虽然核电站的投资高于燃煤电厂,但是,由于核燃料成本远远地低于燃煤成本,相反核燃料反应所释放的能量却远远高于化石燃料燃烧所释放出来的能量,而且核燃料取之不皆,这就使得目前核电站的总发电成本低于烧煤电厂。 8. 核能是可持续发展的能源 据估计,在世界上核裂变的主要燃料铀和钍的储量分别约为490万吨和275万吨。这些裂变燃料足可以用到聚变能时代。轻核聚变的燃料是氘和锂,1升海水能提取30毫克氘,在聚变反应中能产生约等于300升汽油的能量,即"1升海水约等于300升汽油",地球上海水中有40多万亿吨氘,足够人类使用百亿年。地球上的锂储量有2000多亿吨,锂可用来制造氚,足够人类在聚变能时代使用。况且以目前世界能源消费的水平来计算,地球上能够用于核聚变的氘和氚的数量,可供人类使用上千亿年。因此,有关能源专家认为,如果解决了核聚变技术,那么人类将能从根本上解决能源问题。 1. 核工业的主要业务范围 核工业的主要业务范围包括:铀矿勘探、铀矿开采与铀的提取、燃料元件制造、铀同位素分离、反应堆发电、乏燃料后处理、同位素应用以及与核工业相关的建筑安装、仪器仪表、设备制造与加工、安全防护及环境保护。 2. 核燃料循环及其组成 核燃料循环是指核燃料的获得、使用、处理、回收利用的全过程。它是核工业体系中的重要组成部分。核燃料循环通常分为前端和后端两部分,前端包括铀矿勘探、铀矿开采、矿石加工(包括选矿、浸出、提取和沉淀等工序)、精制、转化、浓缩、元件制造等;后端包括对反应堆辐照以后的乏燃料元件进行铀钚分离的后处理以及对放射性废物进行处理、贮存和处置。 3. 铀矿地质勘探 铀是核工业最基本的原料。铀矿地质勘探的目的是查明和研究铀矿床形成的地质条件,总结出铀矿床在时间上和空间上的分布规律,并用此规律指导普查勘探,探明地下的铀矿资源。普查勘探工作的程序为区域地质调查、普查和详查、揭露评价、勘探等,同时还要求工作人员进行地形测量、地质填图、原始资料编录等-系列的基础地质工作。 分散在地壳中的铀元素在各种地质作用下不断集中,最终形成了铀矿物的堆积物,即铀矿床。了解铀矿床的形成过程,对铀矿普查勘探具有十分重要的指导意义。并不是所有的铀矿床都有开采、进行工业利用价值的。据统计,在已发现的170多种铀矿床及含铀矿物中,具有实际开采价值只有14~18%。影响铀矿床工业的两个主要因素是矿石品位和矿床储量。此外,评价的因素还有矿石技术加工性能、矿床开采条件,有用元素综合利用的可能性和交通运输条件等。 4. 铀矿开采 生产铀的第一步是铀矿开采。其任务是从地下矿床中开采出工业品位的铀矿石,或将铀经化学溶浸,生产出液体铀化合物。由于铀矿有放射性,所以铀矿开采其特殊方法。常用的主要有三种:露天开采、地下开采和原地浸出。 露天开采一般用于埋藏较浅的矿体,方法剥离表土和覆盖岩石,使矿石出露,然后进行采矿。 地下开采一般用于埋藏较深的矿体,此种方法的工艺过程比较复杂。与以上两种法方法相比,原地浸出采铀具有生产成本低,劳动强度小等优点,但其应用有一定的局限性,仅适用于具有一定地质、水文地质条件的矿床 。其方法是通过地表钻孔将化学反应剂注入矿带,通过化学反应选择性地溶解矿石中的有用成分--铀,并将浸出液提取出地表,而不使矿石绕围岩产生位移。 5. 铀矿石的加工 铀矿石加工的目的是将开采出来的具有工业品位或经放射性选矿的矿加工富集,使其成为含铀较高的中间产品,即通常所说的铀化学浓缩物。将此种铀化学浓缩物精制,进一步加工成易于氢氟化的铀氧化物作为下一步工序的原料。 铀矿石加工的主要步骤包括:矿石品位、磨矿、矿石浸出,母液分离、溶液纯化、沉淀等工序。 为了便于浸出,矿石被开采出来后,必须将其破碎磨细,使铀矿物充分暴露。然后采用一定的工艺,借助一些化学试剂(即浸出剂)或其它手段将矿石中有价值的组分选择性地溶解出来。浸出方法有两种:酸法和碱法。由于浸出液中铀含量低,而且杂质种类多,含量高,所以必须将杂质去除才能确保铀的纯度。实现这一过程,可以选择以下两种方法:离子交换法(又称吸附法)和溶剂萃取法。水冶生产的最后一道工序是将沉淀物洗涤、压滤、干燥,然后得到水冶产品铀化学浓缩物,又称黄饼。 6. 铀的浓缩 为了提高铀-235浓度所进行的铀同位素的分离处理称为浓缩。通过浓缩可以为某些反应堆提供铀-235浓度符合要求的铀燃料,现今所采用的浓缩方法有气体扩散法、分离法、激光法、喷嘴法、电磁分离法、化学分离法等,其中气体扩散法和离心分离法是现代工业上普遍采用的浓缩方法。浓缩处理是以六氟化铀形式进行的。 7. 核燃料元件 经过提纯或浓缩的铀,还不能直接用作核燃料。必须经过化学,物理、机械加工等处理后,制成各种不同形状和品质的元件,才能供反应堆作为燃料来使用。 核燃料元件种类繁多,按组分特征来分,可分为金属型、陶瓷型和弥散型;按几何形状来分,有柱状、棒状、环状、板状、条状、球状、棱柱状元件;按反应堆来分,可以分为试验堆元件,生产堆元件,动力堆元件(包括核电站用的核燃料组件)。 核燃料元件一般都是由芯体和包壳组成的。由于它长期在强辐射、高温、高流速甚至高压的环境下工作,所以对芯片的综合性能、包壳材料的结构和使用寿命都有很高的要求。可见,核燃料元件制造是一种高科技含量的技术。 8. 乏燃料的后处理 经过辐照的燃料元件,从堆内卸出时总是含有一定量未分裂和新生的裂变燃料。乏燃料的后处理的目的就是回收这些裂变燃料如铀-235,铀-233和钚,利用它们再制造新的燃料元件或用做核武器装料。此外,回收转换原料(铀-238,铯-137,锶-90),提取处理所生成的超铀元素以及可用作射线源的某些放射性裂变产物(如铯-137,锶-90等),都有很大的科学和经济价值。但此项工序放射性强,毒性大,容易发生临界事故,所以,在进行乏燃料的后处理时一定要加强安全防护措施。 后处理工艺一般分为四个步骤:冷却与首端处理、化学分离、通过化学转化还原出铀和钚、通过净化分别制成金属铀(或二氧化铀)及钚(或二氧化钚)。冷却与首端处理是冷却将乏燃料组件解体,即脱除元件包壳,溶解燃料芯块。化学分离(即净化与去污过程)是将裂变产物从U-Pu中清除出去,然后用溶剂淬取法将铀-钚分离并分别以硝酸铀酰和硝酸钚溶液形式提取出来。 9. 三废处理与处置 在核工业生产和科研过程中,会产生一些不同程度放射性的固态、液态和气态的废物,简称为"三废"。在这些废物中,放射性物质的含量虽然很低,危害却很大。普通的外界条件(如物理、化学、生物方法)对放射性物质基本上不会起作用。因此在放射性废物处理过程中,除了靠放射性物质的衰变使其放射性衰减外,就只能采取多级净化、去污、压缩减容、焚烧、固化等措施将放射性物质从废物中分离出来,使浓集放射性物质的废物体积尽量减小,并改变其存在的状态,以达安全处置的目的。这个过程称为"三废处理与处置"。 核电站类型及实例 压水堆核电站 大阪核电站 以压水堆为热源的核电站。它主要由核岛和常规岛组成。压水堆核电站核岛中的四大部件是蒸汽发生器、稳压器、主泵和堆芯。在核岛中的系统设备主要有压水堆本体,一回路系统,以及为支持一回路系统正常运行和保证反应堆安全而设置的辅助系统。常规岛主要包括汽轮机组及二回等系统,其形式与常规火电厂类似。 沸水堆核电站 以沸水堆为热源的核电站。沸水堆是以沸腾轻水为慢化剂和冷却剂并在反应堆压力容器内直接产生饱和蒸汽的动力堆。沸水堆与压水堆同属轻水堆,都具有结构紧凑、安全可靠、建造费用低和负荷跟随能力强等优点。它们都需使用低富集铀作燃料。沸水堆核电站系统有:主系统(包括反应堆);蒸汽-给水系统;反应堆辅助系统等。但发电厂房要做防核处理。 大亚湾核电站 重水堆核电站 以重水堆为热源的核电站。重水堆是以重水作慢化剂的反应堆,可以直接利用天然铀作为核燃料。重水堆可用轻水或重水作冷却剂,重水堆分压力容器式和压力管式两类。重水堆核电站是发展较早的核电站,有各种类别,但已实现工业规模推广的只有加拿大发展起来的坎杜型压力管式重水堆核电站。 快堆核电站 由快中子引起链式裂变反应所释放出来的热能转换为电能的核电站。快堆在运行中既消耗 秦山三期重水堆核电站 裂变材料,又生产新裂变材料,而且所产可多于所耗,能实现核裂变材料的增殖。 世界上已商业运行的核电站堆型,如压水堆、沸水堆、重水堆、石墨气冷堆等都是非增殖堆型,主要利用核裂变燃料,即使再利用转换出来的钚-239等易裂变材料,它对铀资源的利用率也只有1%—2%,但在快堆中,铀-238原则上都能转换成钚-239而得以使用,但考虑到各种损耗,快堆可将铀资源的利用率提高到60%—70%。但目前的快堆开发任很落后,日本的文殊快堆,以及其他研发中的快堆,都还未正常运行。 |
随便看 |
百科全书收录4421916条中文百科知识,基本涵盖了大多数领域的百科知识,是一部内容开放、自由的电子版百科全书。