词条 | 核测井 |
释义 | 核测井(nuclear logging )是指将核技术应用于井中测量, 根据岩石及其孔隙流体的核物理性质,研究井的地质剖面,勘探石油、天然气、煤以及金属、非金属矿藏,研究石油地质、油井工程和油田开发的核地球物理方法,又称放射性测井。 基本概念测井,也叫地球物理测井或石油测井,简称测井,是利用岩层的电化学特性、导电性、声学特性、放射性等地球物理特性,测量地球物理参数的 主要分类 核测井大体分四类:γ测井含自然γ和γ —γ测井(散射测井)。前者又分自然γ和自然γ能谱测井;后者又分地层密度和岩性密度测井。 中子测井主要含中子寿命测井、 一般中子测井和中子诱生γ测井。中子寿命测井也称热中子衰减时间测井;一般中子测井含热中子测井和超热中子测井;它们又含有单探测器中子和补偿中子测井;中子诱生γ能谱测井通常包括快中子非弹性散射γ能谱测井(即C/O比测井)、中子俘获γ能谱测井和中子活化γ能谱测井等。 放射性核素示踪测井这种方法是利用放射核素作为示踪剂,将掺入流体中,并注入到井内,通过流体在井中的流动而使核素分布到各种孔隙空间。利用核γ测井对示踪剂进行追踪测量,确定流体的运动状态及其分布规律。 核成像测井如核磁共振成像测井等。 技术发展核测井技术是随着当代核技术的发展和石油、煤炭、地质矿产等对核测井技术发展的需要而迅速发展起来的尖端测井技术之一。随着人工射线源技术、传感器技术、测量技术、信息处理技术与计算机技术的发展,核测井技术仍处在飞速发展之中。 射线源技术核测井技术的大多数方法依赖于射线源性能,少部分方法利用井下地层的天然放射性进行测量。现有的测井用射线源主要是γ射线源和中子源。受井眼尺寸(偏小、弯曲、不规则等) 、井下环境(高温、高压等) 制约,地面实验用加速器γ源等技术尚难以应用于测井领域。 测井常用的γ源多是放射性同位素源,主要用于示踪测井。随着核技术发展,核反应堆、加速器的不断建造,核燃料循环体系的建立,为放射性核素应用提供了日益丰富的物质基础。放射性同位素广泛应用研究为更好利用现有设备资源开辟了新途径。放射性同位素制备技术是同位素辐射技术应用的物质基础。目前,人工制备放射性同位素的方法有3 种:反应堆生产的丰中子同位素,简称堆照同位素;加速器生产的贫中子同位素,简称加速器同位素;从核燃料废物中提取的同位素,简称裂片同位素。 放射性同位素释放的射线作为一种人工信息源,具有相当高的探测灵敏度,是常规化学分析无法比拟的,这一特征被广泛应用于同位素示踪分析技术,在工农业技术研究中获得了显著的经济、社会、环境效益。测井中的流体密度计、流体识别仪、γ射线探伤仪、厚度检测仪等均利用了放射性同位素信息源技术。 中子源是中子与物质相互作用研究必须的信息源。测井常用的中子源有放射性同位素中子源、自发裂变中子源和人工脉冲中子源3 种。衡量中子源特性的指标是源强度、能量、单色性、γ 辐射和寿命(半衰期) 等。测井常用的A241m2Be 源是放射性同位素中子源,中子产额2×107/ s ,平均中子能量5 MeV;252Cf 是自发裂变中子源,中子产额2 ×108/ s ,平均中子能量 2. 35 MeV ;脉冲中子源(中子管技术) 常用T(d,n) 源,中子产额107~109/ s,强流中子管产额达1010/ s,平均中子能量14. 1 MeV。 应用射线源,必须注意放射性防护、放射性危险、放射性可控等要求,测井用中子源需向小体积、高强度、高度可控、高安全、高耐温、耐压指标发展。 传感器技术传感器是能感受规定的被测量并按照一定的规律转换成可用信号的器件或装置,通常由敏感元件和转换元件组成。它是一种检测装置,能感受到被测量的信息,并能将检测感受到的信息按一定规律变换成为电信号或其他所需形式的输出,满足信息的传输、存储、显示、记录和控制要求。传感器属高新技术的瓶颈工业,它的地位非常重要。我国测井用的传感器技术较为先进,基本上与国际水平相近,但创新不够,大多是引进、模仿和仿制,这与我国测井需要不相适应。努力致力于促进我国核测井传感器事业及其应用的发展,满足核测井应用需要,是传感器生产和应用企业共同的努力方向。 测井用传感器的核心部件是探测器。不同的核辐射需要用不同的探测器测量。所有核探测器均基于射线与物质的相互作用原理,在物质中具有不同的空间分布、能量分布、时间分布和特征作用而制作。 强度型核仪表利用放射源发出的射线(特别质子与γ射线) 与物质相互作用(吸收或散射) 后,射线强度降低从而检测受测试物质的宏观非电参数而设计出的一类仪表。 物质的成分与含量可通过放射源发出的射线与物质相互作用引起的射线强度的变化与诱发的特征能谱加以确定,这种仪表统称为物质成份与含量分析仪表。能谱分析型仪表同样地具有这种成份与含量分析的功能。 测井中用已知活度的γ放射源和探测器共同组成探头(测井仪) 下到钻孔内,沿钻孔连续测量从碳层中散射的γ射线强度,可探知介质的密度,从而确定地层岩性。这种γ测井技术有助于加快能源勘探开发速度,并降低成本。 中子水分计是测量大体积物料中含水量的一种核分析仪表,又称中子水分计或中子湿度计。这种仪表的工作原理基于氢核对快中子的强烈减速慢化效应。测定物料中的慢化中子数量,进而求出介质的含水量。 高分辨率的辐射探测器和多道脉冲高度分析器等核电子学仪器的发展,使分析测量的灵敏度与准确度大为提高。电子计算机的应用进一步改善了数据处理的速度和规模,使能谱分析型仪表结构更趋小型化、轻便化,特别为仪表的现场应用与野外操作提供了便利。这类核仪表可分为3 种类型:1) 荧光类仪表(如放射性核素X 射线荧光分析仪);2) 活化类(主要指中子活化) 仪表;3) 核测井仪表(如石油、煤田、金属测井使用的核仪表) 。 核测井探测器要求高效率、高计数通过率、高能量分辨率、高耐温、耐压、高抗震、小体积、价格适中等。 测井常用的γ和X 射线探测器为闪烁探测器,主要由闪烁体、光电倍增管和电子仪器组成。用光耦合剂将闪烁体与光电倍增管耦合起来,组装成探头,配上电子学仪器,就构成了闪烁探测器。为提高脉冲输出幅度,可选择发光效率高的闪烁体,增大闪烁体尺寸,选择反射系数大的反射层和性能良好的光导系统,调整好光电倍增管前面几级的分压电阻,选择与闪烁体能实现良好匹配的光电倍增管。 闪烁探测器输出脉冲幅度与入射光子在闪烁体中损失的能量成正比。而光子是通过前述3 种效应损失能量的,所以,在测量单能光子时得到的输出的是一连续谱。 与闪烁体相匹配的光电倍增管也有了发展,硅、HgI2等光敏二极管小巧,与闪烁体更匹配,半导体的量子效率远高于光电倍增管;HgI2与CsI ( Tl) 组合探头对662 keVγ射线能量分辨率达5 % ,性能更优的探头还将不断出现。 核测井需要的γ射线和X 射线探测器正向高密度、高精度(能量分辨性好、计数通过率高) 、高计数、高温度稳定性、短荧光衰落、中低价格和小体积发展。高性能位置灵敏γ射线和X 射线核探测器将更广泛应用于测井中。 中子探测器在测井中经常用到,较早使用BF3正比管,因环保要求现正逐渐被3He 正比管取代;选用6Li 玻璃闪烁探头作中子剂量当量探测器,采用中子慢化探测、镉棒三维空间能响调节新原理,从而使仪器灵敏度极高,耐γ、中子能量响应特性好。仪器灵敏度高、抗γ性能好、能量响应特性好、量程宽(7 个量级) 、密闭性强便携式数字显示并伴有声、光定性指示等的性能优越的中子探测器也在发展中。 核测井仪表正在不断更新结构,完善功能,提高精度,改善仪表的稳定性、可靠性、通用性,实现仪表标准化、系列化、小型化、自动化与智能化,以适应现代测井的连续化、高速化、精密化的要求。具体地说,今后核测井仪的发展趋势可能集中在以下5 个方面。 1) 结构上从单元组合式向功能组装式方向发展。 2) 在测量方法上,从简单原始的检测手段向高效率、高分辨力的复杂的测量装置过渡,为获取更多信息,射线强度测量方法逐渐为射线能谱分析法所取代。 3) 在仪器功能上,从单点、单参数检测向多点、多参数自动检测方向发展,与非核技术综合应用,有助于扩大核测井仪表的应用范围,提高其应用效能。 4) 仪器的通用性和安全性方面,核测井仪将进一步实现系列化、标准化。 5) 随着各种支持性技术的发展,特别是计算机的广泛使用,测井仪器的技术水平达到一新的高度。核测井仪采用计算机后,结构紧凑、体积缩小;测量技术由模拟测量向数字化方向发展,实现输入信息自动补偿,系统启动、调节和操作程序化,并对采集的数据进行运算、判断、分析与处理,从而扩大仪表信息功能,提高仪表检测精度,为多参数测量和测井过程闭环控制奠定了基础;仪器将硬件与软件相结合,体现出设计的合理性与操作的简便性;仪器具有故障自我诊断功能,大大减轻了设备维修工作量,从而提高了仪器的可靠性;通过数字和图象信息显示,达到更好的人2机结合,以满足现代核测井生产连续化、自动化、智能化、高速化与集成化的要求。 核测井信息处理技术核技术测试和分析的关键是信息的采集和处理。核测井信息的处理可分为信息采集处理和应用分析处理两个阶段。 核测井信息采集处理是利用测井井下和地面仪器对核测量信息进行采集、处理和记录过程。通常情况下,核测井是通过传感器把核物理信号转换成电信号,并通过滤波、降噪、模数转换等系列处理后记录成计算机可识别的数字信号。放射性计数的统计涨落特性和信息源不强等使得有效信号较易受噪声信号干扰。因此,提高有关信噪比的研究和应用显得相当重要。提高传感器的探测效率和测量精度属硬件技术研究范畴,加强信号分析、统计、拟合、反演、小波变换等软件开发研究正在成为提高信噪比的重要技术。 核测井信息应用分析是以核测井样品模拟刻度为基础、以解谱和与其他信息融合为处理手段、以测井地质应用为目标的信息处理应用。 无论是核辐射强度测井还是全能谱测井,其应用基础均离不开被测量对象(地层) 必须与标准对象(刻度对象) 具有相同或相近的仪器响应特征、且符合线性叠加原理,这是进行核测井信息应用分析的基础,是核测井信息地质应用的前提条件。核辐射强度测井评价认为,总强度与已知的地质信息存在固定的线性关系,通过标定即可进行对应的信息处理。 全能谱测井的标准谱获得必须以被测量地区实际井所包含的物质特性为基础,进行实际的全谱刻度,利用线性叠加原理确定混合谱标准,这是对全谱测井信息正演和对工作谱解析的基础。剥谱技术、逆矩阵解谱、最小二乘解谱等是常用的解谱应用技术。 实际的测井环境条件与标准谱刻度条件不一致可能导致解谱的较大偏差,给应用带来一定困难。测井处理中提出的环境校正可在某种程度上减少或消除这种偏差。测井环境校正处理的主要途径有简化理论评价、蒙特卡洛方法、模型井试验等。测井处理中采用多次测量平均法、比值法、累积辐射处理、重叠技术等可有效提高核测井信息的应用效果。 主要应用在地质勘探与资源开发中,核测井是一种先进的地球物理测井手段,主要利用井孔内岩层本身的放射性或采用人工辐射与井孔物质相互作用的各种效应来取得井下地层物理性质与技术参数的各种信息,核测井是原子核物理研究与应用的拓展技术,这种测井技术已在石油、煤炭与金属矿藏以及水源勘查与开采中得到了广泛的利用。 核测井与其他非核测井技术——声学测井与电学测井共同构成了地球物理三大支柱测井技术,在油田、煤田、金属资源与水资源的勘探与开发中发挥着不可替代的作用能谱型核测井一般包括天然γ能谱测井、快中子非弹性散射γ射线能谱测井、中子俘获γ射线能谱测井与中子活化γ射线能谱测井。 在油田勘探与石油生产中,能谱型核测井较之强度型核测井(如天然γ测井,中子2γ强度测井,中子2中子强度测井) 在性能上代表着一类更为先进的核测井技术。因为该技术通过对地层天然或诱发的放射性物质γ能谱进行分析能较为直接地反映地层的岩性和油、气含量。 随着油田开发的深入,特别是我国大部分油田相继进入中高含水的开发阶段,油藏监测和油藏的再认识的需要更加突出。功能优异的小直径核测井仪器成为急需发展的技术。核示踪测井技术是油田生产测井监测技术发展的重要方向。放射性同位素的应用业已遍及医学、工业、农业和科学研究等各个领域,在很多应用场合,放射性同位素至今尚无代用品;在很多其它应用场合,它比现有可替代的技术或流程更有效、更经济。随着环境保护不断强化,放射性同位素示踪测井将逐渐被稳定同位素取代,更灵敏的位置敏感探测器和更高强度的中子管技术将投入使用。这一技术的发展不会一帆风顺,还将有一研究、试验、实用和适用过程。 核测井技术在石油、煤炭与金属矿藏以及水源勘查与开采等领域具有广泛的应用,在寻找放射性矿藏、放射性环境监测等方面也可发挥着重要作用。随着核测井技术的发展,应用还将不断拓展。 在核测井技术的发展中,核测井仪器与适当的核测井施工工艺的巧妙结合是值得关注的重要方向。注硼中子寿命测井、同位素γ能谱示踪测井、井间示踪测井等代表了核测井工艺技术的创新和发展。核测井信息与其他相关测井信息的融合技术可能成为进一步提高其应用的重要途径。 未来发展1) 核测井技术的不断发展依赖于石油、煤炭、地质矿产勘探开发的需要,同时又受核技术、特别是新型核探测器及核探测工艺技术的发展推动。 2) 我国核测井技术的发展要密切结合生产需要,立足创新,追踪国际核测井先进技术,加强核应用与核科研专家间的合作,共同推动核测井技术的创新和发展。 3) 发展核辐射测井仪器软件化智能化技术、总线式自动测试技术、综合自动化测试系统、新型元器件测量技术及测试仪器、在线测试技术、长效性井下检测仪等是未来核测井信息技术的主要发展方向,而核测井系列化、阵列化、谱列化、标准化和成像技术,则是核测井技术发展的新方向。 4) 有关核信号采集和信息处理的新课题研究和应用项目开发,如辐射成像技术等有潜力成为油田开发测井的重要技术。 5) 核测井新技术与新工艺的结合、核测井信息与其他相关测井信息的融合是核测井技术应用创新方向。 |
随便看 |
百科全书收录4421916条中文百科知识,基本涵盖了大多数领域的百科知识,是一部内容开放、自由的电子版百科全书。