词条 | 过拟合 |
释义 | 为了得到一致假设而使假设变得过度复杂称为过拟合。想像某种学习算法产生了一个过拟合的分类器,这个分类器能够百分之百的正确分类样本数据(即再拿样本中的文档来给它,它绝对不会分错),但也就为了能够对样本完全正确的分类,使得它的构造如此精细复杂,规则如此严格,以至于任何与样本数据稍有不同的文档它全都认为不属于这个类别。 标准定义:给定一个假设空间H,一个假设h属于H,如果存在其他的假设h’属于H,使得在训练样例上h的错误率比h’小,但在整个实例分布上h’比h的错误率小,那么就说假设h过度拟合训练数据。 ----《Machine Learning》Tom M.Mitchell 例:如图所示 可以看出在a中虽然完全的拟合了样本数据,但对于b中的测试数据分类准确度很差。而c虽然没有完全拟合样本数据,但在d中对于测试数据的分类准确度却很高。过拟合问题往往是由于测试数据少等原因造成的。 |
随便看 |
|
百科全书收录4421916条中文百科知识,基本涵盖了大多数领域的百科知识,是一部内容开放、自由的电子版百科全书。