词条 | 古典概型 |
释义 | 古典概型一种概率模型。在这个模型下,随机实验所有可能的结果是有限的,并且每个基本结果发生的概率是相同的。例如:掷一次硬币的实验(质地均匀的硬币),只可能出现正面或反面,由于硬币的对称性,总认为出现正面或反面的可能性是相同的;如掷一个质地均匀骰子的实验,可能出现的六个点数每个都是等可能的;又如对有限件外形相同的产品进行抽样检验,也属于这个模型。是概率论中最直观和最简单的模型;概率的许多运算规则,也首先是在这种模型下得到的。一个试验是否为古典概型,在于这个试验是否具有古典概型的两个特征——有限性和等可能性,只有同时具备这两个特点的概型才是古典概型。 古典概型特点:1、 实验的样本空间只包括有限个元素; 2、 实验中每个基本事件发生的可能性相同; 具有以上两个特点的实验是大量存在的,这种实验叫等可能概型,也叫古典概型。 求古典概型的概率的基本步骤: (1)算出所有基本事件的个数n; (2)求出事件A包含的所有基本事件数m; (3)代入公式P(A)=m/n,求出P(A)。 概率模型的转换: 古典概率模型是在封闭系统内的模型,一旦系统内的某个事件的概率在其他概率确定前被确定,其他事件概率也会跟着发生改变。概率模型会由古典概型转变为几何概型。 |
随便看 |
百科全书收录4421916条中文百科知识,基本涵盖了大多数领域的百科知识,是一部内容开放、自由的电子版百科全书。