请输入您要查询的百科知识:

 

词条 floyd-warshall算法
释义

Floyd-Warshall算法是解决任意两点间的最短路径的一种算法。通常可以在任何图中使用,包括有向图、带负权边的图。

使用条件&范围

Floyd-Warshall 算法用来找出每对点之间的最短距离。它需要用邻接矩阵来储存边,这个算法通过考虑最佳子路径来得到最佳路径。

算法概述

单独一条边的路径也不一定是最佳路径。 从任意一条单边路径开始。所有两点之间的距离是边的权,或者无穷大,如果两点之间没有边相连。 对于每一对顶点 u 和 v,看看是否存在一个顶点 w 使得从 u 到 w 再到 v 比己知的路径更短。如果是更新它。 不可思议的是,只要按排适当,就能得到结果。// dist(i,j) 为从节点i到节点j的最短距离

For i←1to n do

For j←1to n do

dist(i,j) = weight(i,j)

For k←1to n do// k为“媒介节点” {一定要先枚举媒介节点}

For i←1to n do

For j←1to n do

if(dist(i,k) + dist(k,j) < dist(i,j))then// 是否是更短的路径?

dist(i,j) = dist(i,k) + dist(k,j)

这个算法的效率是O(V)。它需要邻接矩阵来储存图。

这个算法很容易实现,只要几行。

即使问题是求单源最短路径,还是推荐使用这个算法,如果时间和空间允许(只要有放的下邻接矩阵的空间,时间上就没问题)。

计算每一对顶点间的最短路径(floyd算法)

例题

设计公共汽车线路(1)

现有一张城市地图,图中的顶点为城市,有向边代表两个城市间的连通关系,边上的权即为距离。现在的问题是,为每一对可达的城市间设计一条公共汽车线路,要求线路的长度在所有可能的方案里是最短的。

输入:

市数,1≤n≤20)

e (有向边数1≤e≤210)

以下e行,每行为边(i,j)和该边的距离wij(1≤i,j≤n)

输出:

k行,每行为一条公共汽车线路

分析:本题给出了一个带权有向图,要求计算每一对顶点间的最短路径。这个问题虽然不是图的连通性问题,但是也可以借鉴计算传递闭包的思想:在枚举途径某中间顶点k的任两个顶点对i和j时,将顶点i和顶点j中间加入顶点k后是否连通的判断,改为顶点i途径顶点k至顶点j的路径是否为顶点i至顶点j的最短路径(1≤i,j,k≤n)。 显然三重循环即可计算出任一对顶点间的最短路径。设 n—有向图的结点个数;path—最短路径集合。其中path[i,j]为vi至vj的最短路上vj的前趋结点序号(1≤i,j≤n);adj—最短路径矩阵。初始时为有向图的相邻矩阵

我们用类似传递闭包的计算方法反复对adj矩阵进行运算,最后使得adj成为存储每一对顶点间的最短路径的矩阵

Var adj:array[1‥n,1‥n] of real;

path:array[1‥n,1‥n] of 0‥n;

计算每一对顶点间最短路径的方法如下:

首先枚举路径上的每一个中间顶点k(1≤k≤n);然后枚举每一个顶点对(顶点i和顶点j,1≤i,j≤n)。如果i顶点和j顶点间有一条途径顶点k的路径,且该路径长度在目前i顶点和j顶点间的所有条途径中最短,则该方案记入adj[i,j]和path[i,j]

adj矩阵的每一个元素初始化为∞;

for i←1 to n do {初始时adj为有向图的相邻矩阵,path存储边信息}

for j←1 to n do

if wij<>0 then begin adj[i,j]←wij;path[i,j]←j;end{then}

else path[i,j]←0;

for k←1 to n do {枚举每一个中间顶点}

for i←1 to n do {枚举每一个顶点对}

for j←1 to n do

if adj[i,k]+adj[k,j]<adj[i,j] {若vi经由vk 至vj的路径目前最优,则记下}

then begin

adj[i,j]←adj[i,k]+adj[k,j];

path[i,j]←path[k,j];

end,{then}

计算每一对顶点间最短路径时间复杂度为W(n3)。算法结束时,由矩阵path可推知任一结点对i、j之间的最短路径方案是什么

Procedure print(i,j);

begin

if i=j then 输出i

else if if path[i,j]=0

then 输出结点i与结点j之间不存在通路

else begin

print (i,path[i,j]); {递归i顶点至j顶点的前趋顶点间的最短路径}

输出j;

end;{else}

end;{print}

由此得出主程序

距离矩阵w初始化为0;

输入城市地图信息(顶点数、边数和距离矩阵w);

计算每一对顶点间最短路径的矩阵path;

for i←1 to n do {枚举每一个顶点对}

for j←1 to n do if path[i,j]<>0 {若顶点i可达顶点j,则输出最短路径方案}

then begin print(i,j);writeln;end;{then}

随便看

 

百科全书收录4421916条中文百科知识,基本涵盖了大多数领域的百科知识,是一部内容开放、自由的电子版百科全书。

 

Copyright © 2004-2023 Cnenc.net All Rights Reserved
更新时间:2025/1/11 2:09:35