词条 | 怎样证明数学题 |
释义 | 基本信息原书名: How to Prove It: A Structured Approach原出版社: Cambridge University Press 作者: (美)Daniel J.Velleman 丛书名: 图灵原版数学·统计学系列 出版社:人民邮电出版社 ISBN:9787115209689 开本:16 页码:384 所属分类: 数学 > 计算数学 > 计算方法 内容简介《怎样证明数学题》介绍了数学证明的基本要点,内容通俗而不失严谨,可以帮助高中以上程度的学生熟悉数学语言,迈入数学殿堂。新版添加了200多个练习题,附录中给出部分练习的答案或提示。 本书适用于任何对逻辑和证明感兴趣的人,数学、计算机科学、哲学、语言学专业的读者都可以从中获益匪浅。 作者简介Daniel J. Velleman 艾姆赫斯特(Amherst)学院数学与计算机科学系教授,《美国数学月刊》主编。另著有 Which Way Did The Bicycle Go和Philosophies of Mathematics。他的研究兴趣广泛,主攻数理逻辑,在组合、拓扑、分析、数学方法论、量子力学等多个领域都发表了大量论文。 目录Introduction 1 Sentential Logic 1.1 Deductive Reasoning and Logical Connectives 1.2 Truth Tables 1.3 Variables and Sets 1.4 Operations on Sets 1.5 The Conditional and Biconditional Connectives 2 Quantificational Logic 2.1 Quantifiers 2.2 Equivalences Involving Quantifiers 2.3 More Operations on Sets 3 Proofs 3.1 Proof Strategies 3.2 Proofs Involving Negations and Conditionals 3.3 Proofs Involving Quantifiers 3.4 Proofs Involving Conjunctions and Biconditionals 3.5 Proofs Involving Disjunctions 3.6 Existence and Uniqueness Proofs 3.7 More Examples of Proofs 4 Relations . 4.1 Ordered Pairs and Cartesian Products 4.2 Relations 4.3 More About Relations 4.4 Ordering Relations 4.5 Closures 4.6 Equivalence Relations 5 Functions 5.1 Functions 5.2 One-to-one and Onto 5.3 Inverses of Functions 5.4 Images and Inverse Images: A Research Project 6 Mathematical Induction 6.1 Proof by Mathematical Induction 6.2 More Examples 6.3 Recursion 6.4 Strong Induction 6.5 Closures Again 7 Infinite Sets 7.1 Equinumerous Sets 7.2 Countable and Uncountable Sets 7.3 The Cantor-Schr6der-Bernstein Theorem Appendix 1: Solutions to Selected Exercises Appendix 2: Proof Designer Suggestions for Further Reading Summary of Proof Techniques Index |
随便看 |
百科全书收录4421916条中文百科知识,基本涵盖了大多数领域的百科知识,是一部内容开放、自由的电子版百科全书。