词条 | 模型判别 |
释义 | 概述多变量信用风险判别模型是以特征财务比率为解释变量,运用数量统计方法推导而建立起的标准模型。运用此模型预测某种性质事件发生的可能性,及早发现信用危机信号,使经营者能够在危机出现的萌芽阶段采取有效措施改善企业经营,防范危机;使投资者和债权人可依据这种信号及时转移投资、管理应收帐款及作出信贷决策。目前国际上这类模型的应用是最有效的,也是国际金融业和学术界视为主流方法。概括起来有线性概率模型、Logit模型、Probit模型和判别分析模型。其中多元判别分析法最受青睐,Logit模型次之。 分析法的比较Logit模型是采用一系列财务比率变量来预测公司破产或违约的概率,然后根据银行、投资者的风险偏好程度设定风险警界线、以此对分析对象进行风险定位和决策。Logit模型与多元判别分析法的本质区别在于前者不要求满足正态分布,其模型采用Logistic函数。由于Logistic回归不假定任何概率分布,不满足正态情况下其判别正确率高于判别分析法的结果。 |
随便看 |
百科全书收录4421916条中文百科知识,基本涵盖了大多数领域的百科知识,是一部内容开放、自由的电子版百科全书。