请输入您要查询的百科知识:

 

词条 A*算法
释义

原理简介

A*(A-Star)算法是一种静态路网中求解最短路最有效的方法。

公式表示为: f(n)=g(n)+h(n),

其中f(n) 是从初始点经由节点n到目标点的估价函数,

g(n) 是在状态空间中从初始节点到n节点的实际代价,

h(n)是从n到目标节点最佳路径的估计代价。

保证找到最短路径(最优解的)条件,关键在于估价函数h(n)的选取:

估价值h(n)<= n到目标节点的距离实际值,这种情况下,搜索的点数多,搜索范围大,效率低。但能得到最优解。

如果 估价值>实际值, 搜索的点数少,搜索范围小,效率高,但不能保证得到最优解。

估价值与实际值越接近,估价函数取得就越好

例如对于几何路网来说,可以取两节点间欧几理德距离(直线距离)做为估价值,即f=g(n)+sqrt((dx-nx)*(dx-nx)+(dy-ny)*(dy-ny));这样估价函数f在g值一定的情况下,会或多或少的受估价值h的制约,节点距目标点近,h值小,f值相对就小,能保证最短路的搜索向终点的方向进行。明显优于Dijstra算法的毫无无方向的向四周搜索。

conditions of heuristic

Optimistic (must be less than or equal to the real cost)

As close to the real cost as possible

详细内容

主要搜索过程伪代码如下:

创建两个表,OPEN表保存所有已生成而未考察的节点,CLOSED表中记录已访问过的节点。

算起点的估价值;

将起点放入OPEN表;

while(OPEN!=NULL)

{

从OPEN表中取估价值f最小的节点n;

if(n节点==目标节点){

break;

}

for(当前节点n 的每个子节点X)

{

算X的估价值;

if(X in OPEN)

{

if( X的估价值小于OPEN表的估价值 ){

把n设置为X的父亲;

更新OPEN表中的估价值; //取最小路径的估价值

}

}

if(X inCLOSE) {

if( X的估价值小于CLOSE表的估价值 ){

把n设置为X的父亲;

更新CLOSE表中的估价值;

从CLOSE表中移出节点, 并放入OPEN表中 //取最小路径的估价值

}

}

if(X not inboth){

把n设置为X的父亲;

求X的估价值;

并将X插入OPEN表中; //还没有排序

}

}//end for

将n节点插入CLOSE表中;

按照估价值将OPEN表中的节点排序; //实际上是比较OPEN表内节点f的大小,从最小路径的节点向下进行。

}//end while(OPEN!=NULL)

保存路径,即 从终点开始,每个节点沿着父节点移动直至起点,这就是你的路径;

启发式搜索其实有很多的算法

比如:局部择优搜索法、最好优先搜索法等等。当然A*也是。这些算法都使用了启发函数,但在具体的选取最佳搜索节点时的策略不同。像局部择优搜索法,就是在搜索的过程中选取“最佳节点”后舍弃其他的兄弟节点,父亲节点,而一直得搜索下去。这种搜索的结果很明显,由于舍弃了其他的节点,可能也把最好的节点都舍弃了,因为求解的最佳节点只是在该阶段的最佳并不一定是全局的最佳。最好优先就聪明多了,他在搜索时,便没有舍弃节点(除非该节点是死节点),在每一步的估价中都把当前的节点和以前的节点的估价值比较得到一个“最佳的节点”。这样可以有效的防止“最佳节点”的丢失。那么A*算法又是一种什么样的算法呢?

其实A*算法也是一种最好优先的算法

只不过要加上一些约束条件罢了。由于在一些问题求解时,我们希望能够求解出状态空间搜索的最短路径,也就是用最快的方法求解问题,A*就是干这种事情的!

我们先下个定义,如果一个估价函数可以找出最短的路径,我们称之为可采纳性。A*算法是一个可采纳的最好优先算法。A*算法的估价函数可表示为:

f'(n) = g'(n) + h'(n)

这里,f'(n)是估价函数,g'(n)是起点到节点n的最短路径值,h'(n)是n到目标的最短路经的启发值。由于这个f'(n)其实是无法预先知道的,所以我们用前面的估价函数f(n)做近似。g(n)代替g'(n),但 g(n)>=g'(n)才可(大多数情况下都是满足的,可以不用考虑),h(n)代替h'(n),但h(n)<=h'(n)才可(这一点特别的重要)。可以证明应用这样的估价函数是可以找到最短路径的,也就是可采纳的。我们说应用这种估价函数的最好优先算法就是A*算法。

举一个例子,其实广度优先算法就是A*算法的特例。其中g(n)是节点所在的层数,h(n)=0,这种h(n)肯定小于h'(n),所以由前述可知广度优先算法是一种可采纳的。实际也是。当然它是一种最臭的A*算法。

再说一个问题,就是有关h(n)启发函数的信息性。h(n)的信息性通俗点说其实就是在估计一个节点的值时的约束条件,如果信息越多或约束条件越多则排除的节点就越多,估价函数越好或说这个算法越好。这就是为什么广度优先算法的那么臭的原因了,谁叫它的h(n)=0,一点启发信息都没有。但在游戏开发中由于实时性的问题,h(n)的信息越多,它的计算量就越大,耗费的时间就越多。就应该适当的减小h(n)的信息,即减小约束条件。但算法的准确性就差了,这里就有一个平衡的问题。

随便看

 

百科全书收录4421916条中文百科知识,基本涵盖了大多数领域的百科知识,是一部内容开放、自由的电子版百科全书。

 

Copyright © 2004-2023 Cnenc.net All Rights Reserved
更新时间:2025/1/9 7:52:31