词条 | 玻尔兹曼方程 |
释义 | Boltzmann equation 玻尔兹曼方程 (1)基本概念: 对于载流子的导电、导热等输运过程的分析,简单的方法就是采用所谓粒子平均运动的模型来处理。这能够得到载流子的各种输运参量,但是因为忽略了许多因素,故结果不太精确。 玻尔兹曼方程是经典粒子牛顿力学运动模型,和能态跃迁的量子力学模型相糅合的产物。如果忽略所有的相干效应,经过一定的简化,可以从量子输运模型中推导出玻尔兹曼方程。经典的输运理论建立在玻尔兹曼传输理论的基础上,玻尔兹曼理论的基本假设包括: (i) 电子和空穴都是微小粒子; (ii) 粒子之间各自独立,没有相干性,通过散射互相作用; (iii) 粒子可以用Bloch理论描述; (iv) 散射是一种瞬态行为,没有时间和空间上的持续性; (v) 只考虑两个粒子之间的散射,不考虑多个粒子之间的共同作用。 (2)玻尔兹曼方程: Boltzmann equation 又称为玻尔兹曼输运方程,它就是分布函数法中所采用的一种方程,即是非平衡分布函数f(k,r,t)所满足的一个方程,求解此方程可得到不同条件下的f(k,r,t),然后即可求出电子的各种输运参量。 玻尔兹曼输运方程中考虑到了载流子的速度分布和散射的方向性,因此较为精确。 在有电场或温度梯度等外场的情况下,根据分布函数因电场、磁场、温度梯度等外场而引起的漂移变化以及因散射而引起的变化,即可建立起Boltamann方程,由于其中的散射项应是一个对散射几率的积分, 所以Boltamann方程是一个微分-积分方程。该方程的求解很复杂, 通常采用近似方法,常用的一种近似方法就是弛豫时间近似。 玻尔兹曼方程是一个高维的方程,三维波矢空间(k),三维实空间(r),再加上一维时间(t),难于求解,常用蒙特卡罗方法来模拟。 (3)局限性: 随着半导体器件进入纳米尺度,量子效应对器件性能的影响越来越重要,载流子的输运进入了量子输运的领域,这同时体现在空间和时间两个方面。一方面,位于费米能量的电子的德布罗易波长与器件的尺寸相比拟,电子的波动性更加明显;另一方面,电子在沟道中的输运时间动量和能量的弛豫时间相当,使得描述载流子散射的费米黄金定则的适用性受到局限。因此,对纳米尺度半导体器件,玻尔兹曼方程的适用性受到局限,载流子输运需要建立在量子力学理论框架上。 |
随便看 |
百科全书收录4421916条中文百科知识,基本涵盖了大多数领域的百科知识,是一部内容开放、自由的电子版百科全书。