请输入您要查询的百科知识:

 

词条 表面等离子共振
释义

表面等离子共振

表面等离子共振(SPR)是一种物理现象

(Surface Plasmon Resonance, SPR)当入射光以临界角入射到两种不同折射率的介质界面(比如玻璃表面的金或银镀层)时,可引起金属自由电子的共振,由于共振致使电子吸收了光能量,从而使反射光在一定角度内大大减弱。其中,使反射光在一定角度内完全消失的入射角称为SPR角。SPR随表面折射率的变化而变化,而折射率的变化又和结合在金属表面的生物分子质量成正比。因此可以通过获取生物反应过程中SPR角的动态变化,得到生物分子之间相互作用的特异性信号 (图1)。

生物分子相互作用分析基于SPR原理

生物分子相互作用分析是基于SPR原理的新型生物传感分析技术,无须进行标记,也可以无须纯化各种生物组分。在天然条件下通过传感器芯片实时、原位和动态测量各种生物分子如多肽、蛋白质、寡核苷酸、寡聚糖,以及病毒、细菌、细胞、小分子化合物之间的相互作用过程。表面等离子共振是表面增强拉曼的重要增强机理之一,由于贵金属纳米粒子的尺寸效应及量子效应通过激发光照射能引起表面等离子共振,从而大大增强拉曼散射信号,已达到痕量检测的目的。

应用操作

综合运用

表面等离子共振广泛应用于研究结合特异性、抗体选择、抗体质控、疾病机制、药物发明、生物治疗、生物处理、生物标记物、配体垂钓、基因调控、细胞信号传导、亲和层析、结构-功能关系、小分子间相互作用等。

检测原理

表面等离子共振(SPR)是一种光学现象,可被用来实时跟踪在天然状态下生物分子间的相互作用。这种方法对生物分子无任何损伤,且不需任何标记物。

先将一种生物分子(靶分子)键合在生物传感器表面,再将含有另一种能与靶分子产生相互作用的生物分子(分析物)的溶液注入并流经生物传感器表面。生物分子间的结合引起生物传感器表面质量的增加,导致折射指数按同样的比例增强,生物分子间反应的变化即被观察到。这种反应用反应单位(RU)来衡量:1 RU = 1pg 蛋白/mm2 = 1 x 10-6 RIU(折射指数单位)。

分析物在被注入的过程中,由对流和扩散流经相互作用表面而与靶分子形成复合物,导致分析物浓度改变。微射流系统内nL数量级流动通道的应用,使得这种浓度的改变降至最低点,以确保高传质系数(Mass Transport Coefficient,km)。为保证分析物的传质性不被限制,键合在生物传感器表面的靶分子浓度必须较低。当分析物被注入时,分析物-靶分子复合物在生物传感器表面形成,导致反应增强。而当分析物被注入完毕后,分析物-靶分子复合物解离,导致反应减弱。通过结合式相互作用模型拟合这种反应曲线,动力学常数便可被确定。而非特异性结合和总折射指数移相等效应则可通过参照曲线减除功能予以驱除。

相关商业化系统

表面等离子共振已经在商业化的检测仪器中应用。目前最广泛使用的是Biacore Life Sciences公司生产的Biacore系列。Biacore Life Sciences现已被General Electric收购。其它表面等离子共振的商业仪器还有例如ICx的SensiQ等。

SensiQ的SPR生物传感器运用了Texas Instruments公司研发的光学传感器设计,以及Kretschmann SPR几何学构建,灵敏度高,光学静稳。生物传感器一次性使用,其羧基化表面适合于多种优化键合方案。生物传感器的安装快捷,几秒钟便可完成,使用也非常简便。功能化的生物传感器即便在储存一段时间后仍可继续使用。

SensiQ的双通道nL数量级的流动池设计,利于实时的参照曲线减除,并保证分析物在生物传感器的相互作用表面具有高传质性(Mass Transport)。

实验设计

原料

亲和分子对包括:

蛋白质–蛋白质(Protein–Protein)

多肽–受体(Peptide–Receptor)

抗体–抗原(Antibody–Antigen)

膜受体–配体(Membrane Receptor–Ligand)

凝集素–聚糖/糖蛋白(Lectin–Polysacharride/Glycoprotein)

蛋白质–小分子(Protein–Small Molecule)

蛋白质–核酸(Protein–Nucleic Acid)

细胞–配体(Cell–Ligand)

调和方法

任何一对亲和分子,一个(靶分子)被键合在生物传感器表面,另一个(分析物)被置于溶液中。当含有分析物的溶液流经靶分子键合的生物传感器表面时,亲和性复合物生成。

SensiQ配备双通道流动注射分析式微射流系统,内有85nL流动池。SensiQ使用一次性的SPR生物传感器,装卸简便。生物传感器表面包被有单层的羧基化寡聚环氧乙烷(Carboxylated Oligoethyleneoxide)基质,可键合多种生物分子,并有效地阻止非特异性结合及变性。靶生物分子的这种既被键合在固相生物传感器表面,又存在于液相中的方式,增进了两种亲和分子间的接触性,同时避免了由于人为因素所造成的动力学分析的复杂化。

SensiQ备有多种键合方案用于改进实验设计,以支持生物分子的附着。最常用的偶联方式是用EDC/NHS进行胺偶联。其它键合方式,例如顺丁烯二酰亚胺-硫醇(Maleimide-thiol),还原胺化,酰肼-醛(Hydrazide-aldehyde),亲和力捕获等,亦可使用。SensiQ双通道检测中的一个通道可用于生成适当的参照曲线。当表面化学物固定好以后,加入最多250 μl的样品,缓冲液流经生物传感器表面时产生稳定的基线。样品注入和计时通过自动化控制完成。通过实验设置向导功能,用户可记录多次注射周期,并具备高重复性。

软件

控制软件

SensiQ的控制软件在原始反应曲线生成时,同时并实时获取和展示两个通道内的数据。参照通道内的数据被减除,以补偿热漂移、非特异性结合、总折射指数移相等效应,从而得到清晰高质的实验数据。控制软件在反应曲线上简单加入报告点,用来确定样品注入后产生的结合反应。报告点的添加可在实验中的任何时候由人工进行,或由程序预设在固定的实验周期之中。列于表格中的所有报告点,连同相关的事件纪录,均有案可查。数据文件被储存后可被控制软件重新打开并编辑。

SensiQ控制软件的简单明了的用户界面,使得实验设计和进行高效省时。实验向导功能简化设置过程,提高实验重复性。

QDATTM分析软件

反应曲线的分析以及其后的动力学和亲和性数据测算通常繁琐费时。SensiQ的QDATTM分析软件极大地简化了数据分析过程,为研究人员的动力学和亲和性测定提供了简单、省时、可信的手段。

QDATTM是在Biologic Software公司应用广泛的Clamp and Scrubber架构之上开发的最新一代分析软件,可在几分钟内成功分析采集到的高质量数据。QDATTM的简明友好界面带领用户通过一系列步骤,几秒钟内便完成信息的测算。QDATTM的模型拟合运用数字整合及优化的曲线拟合算法,迅速地估算最佳拟合参数值,确保相互作用模型和数据集的拟合,以测定动力学和亲和性常数,以及浓度分析。QDATTM同时提供了简单残差图和残差标准差,用来定量评估拟合的程度。QDATTM的动力学拟合模型包括准一级结合模型(Pseudo-first-order Binding Model)和准一级传质结合模型(Pseudo-first-order Binding Model with Mass Transport)。

技术参数

一次性生物传感器

流动池数量2

流动池选择1,或2,或1和2

流动池面积2.2 mm2

流动池容积85 nL(高传质率)

样品加入手动(注射器)

样品注入自动电脑控制人工电脑控制

样品双通道同时注入

样品注入体积10–250 μL

样品注射泵内置式外接式

样品流动速率5–150 μL /分自定(< 250 μL /分)

内部死体积< 1.5 μL

实时参照曲线减除

折射指数范围1.32–1.401.33–1.40

短期背景噪音< 0.25 RU< 1 RU

长期背景噪音< 0.30 RU/分(当环境变化 < 3°C /小时)

温度控制15–40°C室温

尺寸(W x H x D)35.0 x 34.2 x 38.8 cm22.9 x 15.2 x 27.9 cm

重量15.9 kg3.6 kg

电源100–240 V,50/60 Hz

工作范围

分子量低限< 200 Da< 250 Da

ka(结合速率常数) 1 x 107 M–1s–1

kd(解离速率常数)10–6–10–1 s–1

KD(kd / ka)10–4–10–10 M

浓度< 10–10–10–3 M

传感器表面化学

胺基偶联固定

(COOH1和COOH2芯片)

由于胺基基团的普遍性,所以通过胺基偶联固定配体适用于绝大部分的生物分子。到目前我们发现这种方法将配体随机固定,通常得到高质量的结果。因此通过没必要直接固定特定位点。

最常用的方法是使用NHS和EDC含水混合物活化羧基产生胺基活性脂。这个流程有以下的几个好处:

n 无需衍生作用,无需标签,可以固定绝大多数生物分子

n 产生大量稳定的共价键,以防止配体从表面滤掉

n 在广泛的pH值中是非常有效的

n 生物分子无需暴露在恶劣的条件中

n 很容易控制固定条件,可以防止与表面过度交叉连锁

n 化学试剂制备,冻存数月

亲和力捕获表面组氨酸标签蛋白

(HisCap和HisHiCap芯片)

ICx Nomadics公司的HisCap芯片使聚组氨酸标签蛋白的固定稳定、可逆,也让表面等离子共振(SPR)实验更加简单。连有固定蛋白的基线非常稳定,可以做动力学分析实验。

HisCap芯片:

n 提供一个直接固定His-tagged蛋白的最便利的手段。

n 也可以适用于任何带有足够数量的组氨酸残基的蛋白。

HisCap芯片采用Hoffman-LaRoche研发建立的NTA-Ni技术来附着蛋白质。在这种技术中,感兴趣蛋白质的组氨酸的侧链咪唑与表面附着的NTA-Ni复合物共协作,如图所示。只要蛋白质有足够的组氨酸,这种技术就非常有效。典型的组氨酸标签是6个组氨酸,但是3个也可以。

HisCap芯片优势:

n 在实验室的重组蛋白工作中,His-tagging是一个长期建立的标准技术。

n 利用HisCap芯片捕获His-tagged蛋白产生稳定的基线。

n 在温和的条件,可以再生芯片。例如EDTA或者咪唑。

n 可重复使用HisCap芯片。

囊泡捕获膜受体相互作用

(VesCap芯片)

利用ICX囊泡捕获(VesCap)芯片可以研究分子与细胞膜、脂质体的相互作用,进行实时、无标记的实验。在VesCap芯片中,脂双层好像在自然细胞环境中,自身构造中的各种细胞膜组分可以在细胞膜真实模型中自由混合。我们还不能确认囊泡溶入单膜双层,但是这在二维表面是极其可能。

n 一个好的实验模型应包含药物、毒素以及在细胞信号中所涉及的周边膜关联蛋白质

n 膜蛋白和伴生蛋白只在真实的细胞膜中相互作用

n 可以固定着床在脂质体的受体/配体

VesCap芯片性质:

n 脂双层和膜蛋白的自身结构依保持不变。在传感器表面的囊泡捕获是非共价的,允许任意方向上的膜组分自由融合。

n PEG-正葵胺层展示出一个简单的二维相互作用平面。

n 附着在表面的囊泡、脂类体的制备很简单。

n VesCap化学特别适合一个过度表达表面受体的细胞系

n VesCap芯片的再生很简单。表面活化剂和溶剂的组合清除VesCap芯片表面所有的囊泡,从而再生VesCap芯片。

亲和素-生物素固定

(BioCap和AvCap芯片)

通过亲和素-生物素为基础的方法固定生物分子,操作简单、效果出色,在今天仍然广受研究人员的欢迎。利用了这个技术,BioCap芯片和AvCap芯片可靠固定配体。示意图如下描绘了这两种固定方法。主要优势在于:

n 不依赖于蛋白质的等电点

n 只需要少量配体

n 可商业获取,广泛的生物素试剂

n 生物素试剂盒操作简单

n 固定只需要简单的注射

n 当所需的Rmax达到时,停止注射可以精确的控制固定结合物的浓度

n 相对于COOH芯片,表面具有很低的静电电荷

n 一个生物素反应通常产生足够产物,可以无限量的固定。

随便看

 

百科全书收录4421916条中文百科知识,基本涵盖了大多数领域的百科知识,是一部内容开放、自由的电子版百科全书。

 

Copyright © 2004-2023 Cnenc.net All Rights Reserved
更新时间:2025/1/9 8:23:32