词条 | 标准偏差 |
释义 | 标准偏差(Std Dev,Standard Deviation) -统计学名词。一种量度数据分布的分散程度之标准,用以衡量数据值偏离算术平均值的程度。标准偏差越小,这些值偏离平均值就越少,反之亦然。标准偏差的大小可通过标准偏差与平均值的倍率关系来衡量。 公式标准偏差公式:S = Sqrt[(∑(xi-x拔)^2) /(N-1)]公式中∑代表总和,x拔代表x的均值,^2代表二次方,Sqrt代表平方根。 例:有一组数字分别是200、50、100、200,求它们的标准偏差。 x拔 = (200+50+100+200)/4 = 550/4 = 137.5 S^2 = [(200-137.5)^2+(50-137.5)^2+(100-137.5)^2+(200-137.5)^2]/3 标准偏差 S = Sqrt(S^2)=75 STDEV基于样本估算标准偏差。标准偏差反映数值相对于平均值 (mean) 的离散程度。 语法STDEV(number1,number2,...)Number1,number2,... 是对应于总体中的样本的数字参数。 说明忽略逻辑值(TRUE 和 FALSE)和文本。如果不能忽略逻辑值和文本,请使用 STDEVA 函数。 STDEV 假设其参数是总体中的样本。如果数据代表整个样本总体,则应使用函数 STDEVP 来计算标准偏差。 此处标准偏差的计算使用“无偏差”或“n-1”方法。 STDEV 的计算公式如下: 计算步骤标准偏差的计算步骤是: 步骤一、(每个样本数据 减去 样本全部数据的平均值)。 步骤二、把步骤一所得的各个数值的平方相加。 步骤三、把步骤二的结果除以 (n - 1)(“n”指样本数目)。 步骤四、从步骤三所得的数值之平方根就是抽样的标准偏差。 举例假设有 10 件工具在制造过程中是由同一台机器制造出来的,并取样为随机样本进行断裂强度测量。 St1 St2 St3 St4 St5 St6 St7 St8 St9 St10 公式 说明(结果) 1345 1301 1368 1322 1310 1370 1318 1350 1303 1299 =STDEV([St1], [St2], [St3], [St4], [St5], [St6], [St7], [St8], [St9], [St10]) 断裂强度的标准偏差 (27.46391572) 标准差标准差也被称为标准偏差,或者实验标准差,标准差(Standard Deviation)各数据偏离平均数的距离(离均差)的平均数,它是离差平方和平均后的方根。用σ表示。因此,标准差也是一种平均数。标准差是方差的算术平方根。 标准差能反映一个数据集的离散程度。平均数相同的,标准差未必相同。 例如,A、B两组各有6位学生参加同一次语文测验,A组的分数为95、85、75、65、55、45,B组的分数为73、72、71、69、68、67。这两组的平均数都是70,但A组的标准差为18.71分,B组的标准差为2.37分,说明A组学生之间的差距要比B组学生之间的差距大得多。 标准偏差(标准差)的定义标准差(Standard Deviation)各数据偏离平均数的距离(离均差)的平均数,它是离差平方和平均后的方根。用σ表示。因此,标准差也是一种平均数。标准差是方差的算术平方根。 标准差能反映一个数据集的离散程度。平均数相同的,标准差未必相同。 例如,A、B两组各有6位学生参加同一次语文测验,A组的分数为95、85、75、65、55、45,B组的分数为73、72、71、69、68、67。这两组的平均数都是70,但A组的标准差为17.08分,B组的标准差为2.16分,说明A组学生之间的差距要比B组学生之间的差距大得多。 标准偏差(Std Dev,Standard Deviation) - 统计学名词。一种量度数据分布的分散程度之标准,用以衡量数据值偏离算术平均值的程度。标准偏差越小,这些值偏离平均值就越少,反之亦然。标准偏差的大小可通过标准偏差与平均值的倍率关系来衡量。 |
随便看 |
百科全书收录4421916条中文百科知识,基本涵盖了大多数领域的百科知识,是一部内容开放、自由的电子版百科全书。