请输入您要查询的百科知识:

 

词条 TSPR
释义

为了提高查询结果的主题相关性,2002年斯坦福大学的Taher Haveliwala提出了主题敏感的Pagerank算法TSPR,现在是Google排名的核心算法之一。

无论Pagerank、HITs甚至HillTop算 法都存在“主题漂移"问题,特别对于疯狂而又随意交互外链的站点,导致搜索引擎返回主题无关结果,搜索引擎用户体验很差。而TSPR借鉴了早期开发目录 (ODP,如Yahoo,Dmoz等)的思想并结合PageRank算法:针对一个查询来确定一个URL对该查询的主题敏感性得分,作为排名的一个重要依据,大大提高了返回结果的主题相关性。

TSPR算法主要分为两个过程:

第一过程针对URL离线生成Rank向量,这个过程是基于开放目录的,以Dmoz为例,“易点网站优化”的首页 URL"http://www.***.cn/"在"Open Directory - World: Chinese Simplified: 营销: 网络营销"这个主题(这里假设为Cj)里,假设该页面上的非隶属URL数为L个,那么"ggseo"的URL对主题Cj的得分(Ranki)为1/L,由于“易点网站优化”的URL可能出现在多个主题目录中(对于主题目录页面中没有该URL,自然得分就为0),那么选取TOP N个主题得分,组成这个URL的Rank向量。

第二个过程就是在线生成针对查询关键词的URL的主题敏感性得分,(1).首先计算一个查询是某一主题的可能性与敏感性得分,和HillTop算法一样, 将一个查询分为k个术语(term),根据朴素贝叶斯分类器(机器学习与数据挖掘常用的一种数学方法,这里不详述),计算该查询是某一主题的概率,以“网站优化”为例,分为"网站"和"优化"两个术语属于Cj主题的概率为0.8和0.1,那么该查询为Cj主题的可能性为P(Cj)*0.08 (其中P(Cj)也是一个概率,也可以作为个性化参数,如表示用户对主题Cj的偏好程度);(2).然后计算针对该查询和主题Cj时"易点网站优化"的URL的敏感性得分,该得分为TSPRj=Ranki*P(Cj)*0.08,那么的针对“网站优化”这个查询,ggseo的URL针对“网站优化”这个查询的敏感性得分等于上述所有主题中TOP N个TSPRj得分之和(其实也就是第一个过程Rank向量与该查询属于TOP N个Cj概率向量的点积)。

TSPR算法的总体过程如上,简单的说,对于一个查询,计算一个URL对该查询的主题敏感性得分是依赖于开放目录的。足见Google对开放目录的重视。

总结:1.一个网站的被开放目录收录是极其重要的,是其在一些主题性关键词查询获得较好Google排名的保证,而这类关键词一般都是热门关键词,是网站的立身 之本。2.从第一个过程可以看出,一个主题的网站越多,每个网站的敏感性得分就会越小,从第二个过程可以看出一个网站被越多的主题收录,敏感性的就越高,显然被越多的开放目录收录,主题敏感性就越高。所以选择合适主题,让尽量多的开放目录收录可以提高重要页面的主题敏感性得分。

随便看

 

百科全书收录4421916条中文百科知识,基本涵盖了大多数领域的百科知识,是一部内容开放、自由的电子版百科全书。

 

Copyright © 2004-2023 Cnenc.net All Rights Reserved
更新时间:2024/11/15 6:50:54