词条 | 智能监控技术 |
释义 | 智能监控技术就是使用计算机图像视觉分析技术,通过将场景中背景和目标分离进而分析并追踪在摄像机场景内目标。用户可以根据的分析模块,通过在不同摄像机的场景中预设不同的非法规则,一旦目标在场景中出现了违反预定义规则的行为,系统会自动发出告警信息,监控指挥平台会自动弹出报警信息并发出警示音,并触发联动相关的设备,用户可以通过点击报警信息,实现报警的场景重组并采取相关预防措施。 智能监控技术类别目前智能监控技术主要包括几个大类:1、对人、物的识别;2、对人、物运动轨迹的识别;3、对视频环境影响的判断和补偿。 对人、物的识别:主要就是识别监控系统关心的内容,包括人脸识别、车牌号识别、车辆类型识别、船只识别、红绿灯识别等等。识别类的智能监控技术,最关键的要求就是识别的准确率。比方说车牌号识别,目前市场上做的好的,识别率在95%甚至98%以上,这样就能够较好地满足道路监控类客户的需求。如果识别率低于90%,就会对管理人员带来很大的麻烦。识别类技术,常常应用于道路监控、金融银行、航道管理等行业,主要是为客户提供识别记录和分级管理的依据。 对人、物运动轨迹的识别和处理:目前细分的很多,主要包括虚拟警戒线、虚拟警戒区域、智能跟踪、人数统计、车流统计、物体出现和消失、人员突然奔跑、人员突然聚集等等。此类技术,除了数量统计外,一般是对某个过程进行判断,一旦发现了异常情况,如有人进入警戒区域、广场东北角有人迅速聚集等情况,就发出报警信息,提醒值班监控人员关注相应热点区域。对于数量统计类技术,关键的技术点是发现异常情况,并对异常情况进行数量统计。所以要求统计数据的准确率,尽量降低误差。运动轨迹识别处理类的技术,受实际监控应用场景影响非常大。此类技术的关键是能够尽快发现异常,需要尽量避免遗漏,提高预报的准确率。目前此类功能主要应用于平安城市建设、商业监控等行业。 对视频环境影响的判断和补偿:环境的影响主要包括雨、雪、大风、大雾等恶劣天气、夜间低照度情况、摄像头遮挡或偏移、摄像头抖动等等。智能监控技术能够实现在恶劣视频环境情况下实现较正常的监控功能。受环境影响视频不清楚的时候,尽早发现画面中的人,或者判断摄像头偏移的情况后发出报警。此类功能关键技术点是在各种应用场合下,均能够较稳定地输出智能分析的信息,尽量减少环境对视频监控的影响。此类功能具备普遍的适应性,80%以上的监控点,都有增添此类功能的潜在需求。 |
随便看 |
百科全书收录4421916条中文百科知识,基本涵盖了大多数领域的百科知识,是一部内容开放、自由的电子版百科全书。