词条 | 圆周角定理 |
释义 | 数学术语 圆周角 定义顶点在圆上,并且两边都与圆相交的角叫做圆周角 圆周角定理一条弧所对的圆周角等于它所对的圆心角的一半。 证明已知在⊙O中,∠BOC与圆周角∠BAC同对弧BC,求证:∠BOC=2∠BAC. 证明: 情况1:如图1,当圆心O在∠BAC的一边上时,即A、O、B在同一直线上时:∵OA、OC是半径 ∴OA=OC ∴∠BAC=∠ACO(等边对等角) ∵∠BOC是△OAC的外角 ∴∠BOC=∠BAC+∠ACO=2∠BAC 情况2:如图2,,当圆心O在∠BAC的内部时: 连接AO,并延长AO交⊙O于D∵OA、OB、OC是半径 ∴OA=OB=OC ∴∠BAD=∠ABO,∠CAD=∠ACO(等边对等角) ∵∠BOD、∠COD分别是△AOB、△AOC的外角 ∴∠BOD=∠BAD+∠ABO=2∠BAD ∠COD=∠CAD+∠ACO=2∠CAD ∴∠BOC=∠BOD+∠COD=2(∠BAD+∠CAD)=2∠BAC 情况3:如图3,当圆心O在∠BAC的外部时:连接AO,并延长AO交⊙O于D ∵OA、OB、OC、是半径 ∴∠BAD=∠ABO(等边对等角),∠CAD=∠ACO(OA=OC) ∵∠DOB、∠DOC分别是△AOB、△AOC的外角 ∴∠DOB=∠BAD+∠ABO=2∠BAD ∠DOC=∠CAD+∠ACO=2∠CAD ∵∠BAC=∠CAD-∠BAD ∠BOC=∠DOC-∠DOB=2(∠CAD-∠BAD)=2∠BAC 圆周角推论特殊圆周角1: 半圆(弧)和直径所对圆周角是90°. 90°圆周角所对弦是直径. (常用辅助线:已知直径,作其所对圆周角;已知90‵圆周角,作其所对弦,即直径.) 等弧所对圆周角相等圆周角推论2: 同(等)弧所对圆周角相等. 同(等)圆中,相等的圆周角所对弧相等. 命题1: 在圆中作弦MN,于直线MN同侧取点A、B、C,使点A、B、C分别在圆内、上、外,将点A、B、C分别与 点M、N连结,则有∠A>∠B>∠C (图略,证明:三角形一外角等于不相邻两内角和.) 命题2: 顶点在圆外的角(两边与圆相交)的度数等于其所截两弧度数差的一半. 顶点在圆内的角(两边与圆相交)的度数等于其及其对顶角所截弧度数和的一半. (图略,证明略) |
随便看 |
百科全书收录4421916条中文百科知识,基本涵盖了大多数领域的百科知识,是一部内容开放、自由的电子版百科全书。