词条 | 特征值 |
释义 | 在A变换的作用下,向量ξ仅仅在尺度上变为原来的λ倍。称ξ是A 的一个特征向量,λ是对应的特征值(本征值),是(实验中)能测得出来的量,与之对应在量子力学理论中,很多量并不能得以测量,当然,其他理论领域也有这一现象。 简介eigen value 又称本征值。 设A是向量空间的一个线性变换,如果空间中某一非零向量通过A变换后所得到的向量和X 仅差一个常数因子,即AX=kX ,则称k为A的特征值,X称为A的属于特征值k的特征向量或特征矢量(eigenvector)。如在求解薛定谔波动方程时,在波函数满足单值、有限、连续性和归一化条件下,势场中运动粒子的总能量(正)所必须取的特定值,这些值就是正的本征值。 设M是n阶方阵, I是单位矩阵, 如果存在一个数λ使得 M-λI 是奇异矩阵(即不可逆矩阵, 亦即行列式为零), 那么λ称为M的特征值。 计算方法特征值的计算方法n阶方阵A的特征值λ就是使齐次线性方程组(A-λI)x=0有非零解的值λ,也就是满足方程组|A-λI|=0的λ都是矩阵A的特征值 |
随便看 |
|
百科全书收录4421916条中文百科知识,基本涵盖了大多数领域的百科知识,是一部内容开放、自由的电子版百科全书。