词条 | 伺服系统 |
释义 | 伺服系统(servomechanism)是使物体的位置、方位、状态等输出被控量能够跟随输入目标(或给定值)的任意变化的自动控制系统。它的主要任务是按控制命令的要求、对功率进行放大、变换与调控等处理,使驱动装置输出的力矩、速度和位置控制的非常灵活方便。 基本概念伺服系统是用来精确地跟随或复现某个过程的反馈控制系统。又称随动系统。在很多情况下,伺服系统专指被控制量(系统的输出量)是机械位移或位移速度、加速度的反馈控制系统, 其作用是使输出的机械位移(或转角)准确地跟踪输入的位移(或转角)。伺服系统的结构组成和其他形式的反馈控制系统没有原则上的区别。 伺服系统最初用于船舶的自动驾驶、火炮控制和指挥仪中,后来逐渐推广到很多领域,特别是自动车床、天线位置控制、导弹和飞船的制导等。采用伺服系统主要是为了达到下面几个目的:① 以小功率指令信号去控制大功率负载。火炮控制和船舵控制就是典型的例子。②在没有机械连接的情况下,由输入轴控制位于远处的输出轴,实现远距同步传动。③使输出机械位移精确地跟踪电信号,如记录和指示仪表等。 发展历史伺服源自英文单词“Servo”,顾名思义,就是指系统跟随外部指令进行人们所期望的运动,而其中的运动要素包括位置、速度和力矩等物理量。回顾伺服系统的发展历程,从最早的液压、气动到如今的电气化,由伺服电机、反馈装置与控制器组成的伺服系统已经走过了近50个年头。 如今,随着技术的不断成熟,交流伺服电机技术凭借其优异的性价比,逐渐取代直流电机成为伺服系统的主导执行电机。交流伺服系统技术的成熟也使得市场呈现出快速的多元化发展,并成为工业自动化的支撑性技术之一。 伺服系统的发展趋势:即高精度、高速度、大功率。伺服系统的发展要充分利用电子和计算机技术,采用数字式伺服系统,利用微机实现调节控制,增强软件控制功能,排除模拟电路的非线性误差和调整误差以及温度漂移等因素的影响,这可大大提高伺服系统的性能,并为实现最优控制、自适应控制创造条件。同时,要开发高精度、快速检测元件与高性能的伺服电机(执行元件)。 突出性能衡量伺服系统性能的主要指标有频带宽度和精度。频带宽度简称带宽,由系统频率响应特性来规定,反映伺服系统的跟踪的快速性。带宽越大,快速性越好。伺服系统的带宽主要受控制对象和执行机构的惯性的限制。惯性越大,带宽越窄。一般伺服系统的带宽小于15赫,大型设备伺服系统的带宽则在1~2赫以下。自20世纪70年代以来,由于发展了力矩电机及高灵敏度测速机,使伺服系统实现了直接驱动,革除或减小了齿隙和弹性变形等非线性因素,使带宽达到50赫,并成功应用在远程导弹、人造卫星、精密指挥仪等场所。伺服系统的精度主要决定于所用的测量元件的精度。因此,在伺服系统中必须采用高精度的测量元件,如精密电位器、自整角机、旋转变压器、光电编码器、光栅、磁栅和球栅等。此外,也可采取附加措施来提高系统的精度,例如将测量元件(如自整角机)的测量轴通过减速器与转轴相连,使转轴的转角得到放大,来提高相对测量精度。采用这种方案的伺服系统称为精测粗测系统或双通道系统。通过减速器与转轴啮合的测角线路称精读数通道,直接取自转轴的测角线路称粗读数通道。 伺服系统按所用驱动元件的类型可分为机电伺服系统、液压伺服系统和气动伺服系统。 最基本的伺服系统包括伺服执行元件(电机、液压缸等)、反馈元件和伺服驱动器,但是要让这个系统运转起来还需要一个上位机构,PLC,专门的运动控制卡,工控机+PCI卡,以便于给伺服驱动器发送指令。 疑问解答什么是伺服电机?有几种类型?工作特点是什么? 答:伺服电动机又称执行电动机,在自动控制系统中,用作执行元件,把所收到的电信号转换成电动机轴上的角位移或角速度输出。分为直流和交流伺服电动机两大类 请问交流伺服电机和无刷直流伺服电机在功能上有什么区别? 答:交流伺服要好一些,因为是正弦波控制,转矩脉动小。无刷直流伺服是梯形波。但直流伺服比较简单,便宜。 典型机型20世纪80年代以来,随着集成电路、电力电子技术和交流可变速驱动技术的发展,永磁交流伺服驱动技术有了突出的发展,各国著名电气厂商相继推出各自的交流伺服电动机和伺服驱动器系列产品并不断完善和更新。交流伺服系统已成为当代高性能伺服系统的主要发展方向,使原来的直流伺服面临被淘汰的危机。90年代以后,世界各国已经商品化了的交流伺服系统是采用全数字控制的正弦波电动机伺服驱动。交流伺服驱动装置在传动领域的发展日新月异。 优势劣势永磁交流伺服电动机同直流伺服电动机比较: 主要优势: ⑴无电刷和换向器,因此工作可靠,对维护和保养要求低。 ⑵定子绕组散热比较方便。 ⑶惯量小,易于提高系统的快速性。 ⑷适应于高速大力矩工作状态。 ⑸同功率下有较小的体积和重量。 主要劣势: ⑴永磁交流伺服系统采用了编码器检测磁极位置,算法复杂; ⑵交流伺服系统维修比较麻烦,因为电路结构复杂; ⑶交流伺服驱动器可靠性不如直流伺服,因为板件太过于精密。 自从德国MANNESMANN的Rexroth公司的Indramat分部在1978年汉诺威贸易博览会上正式推出MAC永磁交流伺服电动机和驱动系统,这标志着此种新一代交流伺服技术已进入实用化阶段。到20世纪80年代中后期,各公司都已有完整的系列产品。整个伺服装置市场都转向了交流系统。早期的模拟系统在诸如零漂、抗干扰、可靠性、精度和柔性等方面存在不足,尚不能完全满足运动控制的要求,近年来随着微处理器、新型数字信号处理器(DSP)的应用,出现了数字控制系统,控制部分可完全由软件进行。 到目前为止,高性能的电伺服系统大多采用永磁同步型交流伺服电动机,控制驱动器多采用快速、准确定位的全数字位置伺服系统。典型生产厂家如德国西门子、美国科尔摩根和日本松下及安川等公司。 发展趋势现代交流伺服系统,经历了从模拟到数字化的转变,数字控制环已经无处不在,比如换相、电流、速度和位置控制;采用新型功率半导体器件、高性能DSP 加FPGA、以及伺服专用模块也不足为奇。国际厂商伺服产品每5 年就会换代,新的功率器件或模块每2~2.5 年就会更新一次,新的软件算法则日新月异,总之产品生命周期越来越短。总结国内外伺服厂家的技术路线和产品路线,结合市场需求的变化,可以看到以下一些最新发展趋势: 高效率化 尽管这方面的工作早就在进行,但是仍需要继续加强。主要包括电机本身的高效率比如永磁材料性能的改进和更好的磁铁安装结构设计,也包括驱动系统的高效率化,包括逆变器驱动电路的优化,加减速运动的优化,再生制动和能量反馈以及更好的冷却方式等。 直接驱动 直接驱动包括采用盘式电机的转台伺服驱动和采用直线电机的线性伺服驱动,由于消除了中间传递误差,从而实现了高速化和高定位精度。直线电机容易改变形状的特点可以使采用线性直线机构的各种装置实现小型化和轻量化。 高速、高精、高性能化 采用更高精度的编码器(每转百万脉冲级),更高采样精度和数据位数、速度更快的DSP,无齿槽效应的高性能旋转电机、直线电机,以及应用自适应、人工智能等各种现代控制策略,不断将伺服系统的指标提高。 一体化和集成化 电动机、反馈、控制、驱动、通讯的纵向一体化成为当前小功率伺服系统的一个发展方向。有时我们称这种集成了驱动和通讯的电机叫智能化电机(Smart Motor),有时我们把集成了运动控制和通讯的驱动器叫智能化伺服驱动器。电机、驱动和控制的集成使三者从设计、制造到运行、维护都更紧密地融为一体。但是这种方式面临更大的技术挑战(如可靠性)和工程师使用习惯的挑战,因此很难成为主流,在整个伺服市场中是一个很小的有特色的部分。 通用化 通用型驱动器配置有大量的参数和丰富的菜单功能,便于用户在不改变硬件配置的条件下,方便地设置成V/F 控制、无速度传感器开环矢量控制、闭环磁通矢量控制、永磁无刷交流伺服电动机控制及再生单元等五种工作方式,适用于各种场合,可以驱动不同类型的电机,比如异步电机、永磁同步电机、无刷直流电机、步进电机,也可以适应不同的传感器类型甚至无位置传感器。可以使用电机本身配置的反馈构成半闭环控制系统,也可以通过接口与外部的位置或速度或力矩传感器构成高精度全闭环控制系统。 智能化 现代交流伺服驱动器都具备参数记忆、故障自诊断和分析功能,绝大多数进口驱动器都具备负载惯量测定和自动增益调整功能,有的可以自动辨识电机的参数,自动测定编码器零位,有些则能自动进行振动抑止。将电子齿轮、电子凸轮、同步跟踪、插补运动等控制功能和驱动结合在一起,对于伺服用户来说,则提供了更好的体验。 网络化和模块化 将现场总线和工业以太网技术、甚至无线网络技术集成到伺服驱动器当中,已经成为欧洲和美国厂商的常用做法。现代工业局域网发展的重要方向和各种总线标准竞争的焦点就是如何适应高性能运动控制对数据传输实时性、可靠性、同步性的要求。随着国内对大规模分布式控制装置的需求上升,高档数控系统的开发成功,网络化数字伺服的开发已经成为当务之急。模块化不仅指伺服驱动模块、电源模块、再生制动模块、通讯模块之间的组合方式,而且指伺服驱动器内部软件和硬件的模块化和可重用。 从故障诊断到预测性维护 随着机器安全标准的不断发展,传统的故障诊断和保护技术(问题发生的时候判断原因并采取措施避免故障扩大化)已经落伍,最新的产品嵌入了预测性维护技术,使得人们可以通过Internet 及时了解重要技术参数的动态趋势,并采取预防性措施。比如:关注电流的升高,负载变化时评估尖峰电流,外壳或铁芯温度升高时监视温度传感器,以及对电流波形发生的任何畸变保持警惕。 专用化和多样化 虽然市场上存在通用化的伺服产品系列,但是为某种特定应用场合专门设计制造的伺服系统比比皆是。利用磁性材料不同性能、不同形状、不同表面粘接结构(SPM)和嵌入式永磁(IPM)转子结构的电机出现,分割式铁芯结构工艺在日本的使用使永磁无刷伺服电机的生产实现了高效率、大批量和自动化,并引起国内厂家的研究。 小型化和大型化 无论是永磁无刷伺服电机还是步进电机都积极向更小的尺寸发展,比如20,28,35mm 外径;同时也在发展更大功率和尺寸的机种,已经看到500KW 永磁伺服电机的出现。体现了向两极化发展的倾向。 应用趋势自动控制系统不仅在理论上飞速发展,在其应用器件上也日新月异。模块化、数字化、高精度、长寿命的器件每隔3~5年就有更新换代的产品面市。传统的交流伺服电机特性软,并且其输出特性不是单值的;步进电机一般为开环控制而无法准确定位,电动机本身还有速度谐振区,pwm调速系统对位置跟踪性能较差,变频调速较简单但精度有时不够,直流电机伺服系统以其优良的性能被广泛的应用于位置随动系统中,但其也有缺点,例如结构复杂,在超低速时死区矛盾突出,并且换向刷会带来噪声和维护保养问题。目前,新型的永磁交流伺服电机发展迅速,尤其是从方波控制发展到正弦波控制后,系统性能更好,它调速范围宽,尤其是低速性能优越。 参考图书参考图书(一)作/译者:敖荣庆 袁坤出版社:航空工业出版社 出版日期:2006年09月 ISBN:9787801837318 [十位:7801837312] 页数:205 重约:0.414KG 定价:¥28.00 内容提要: 本书根据机械设计、制造及自动化,机电一体化,航空航天,自动化控制等专业的需要而编写。主要内容有伺服系统基础,伺服系统驱动元件的结构、工作原理、特点及应用,伺服系统检测器件的结构、工作原理及其使用,各种典型伺服系统的组成原理,伺服系统的计算机控制,伺服系统的误差分析和伺服系统的设计等。 本书在编写过程中,力求理论联系实际,深入浅出,实用性强。适合作为大专院校本科、研究生的专业基础教材,也可供从事数控技术、机电一体化产品开发、控制系统设计和航空航天等领域的工程技术人员参考。 图书目录: 第一章 绪论 第一节 发展简况 第二节 伺服系统的组成及其基本特征 第三节 伺服系统的分类 第二章 位置检测元件 第一节 概述 一、数控机床对位置检测元件的要求 二、位置检测元件的分类和特点 第二节 旋转变压器 一、旋转变压器的结构 二、旋转变压器的工作原理 三、旋转变压器的信号处理 第三节 感兴同步器 一、感应同步器的结构 二、感应同步器的工作原理 三、感应同步器的信号处理 四、感应同步器数字位置测量系统 五、感应同步器的安装 六、感应同步器的分类和技术参数 第四节 脉冲编码器 一、增量式脉冲编码器 二、绝对式脉冲编码器 第五节 光栅 一、光栅的分类 二、光栅的结构 三、光栅的工作原理 四、光栅读数头 五、光栅检测装置的辨向 六、提高光栅分辨精度的措施 七、光栅的安装 第六节 磁尺 思考题与习题 第三章 驱动元件 第一节 步进电机 一、步进电机的分类 二、步进电机的结构 三、步进电机的工作原理 四、步进电机的主要特性 五、步进电机的主要技术参数及选用 第二节 直流伺服电机 一、小惯量直流伺服电机 二、宽调速直流伺服电机 第三节 交流伺服电机 一、交流伺服电机的基本结构 二、无刷直流电机 三、正弦波永磁同步电机 四、交流伺服电机的主要技术参数 思考题与习题 第四章 步进式伺服系统 第一节 环形分配器 一、硬件环形分配器 二、软件环形分配器 第二节 步进电机的驱动功率放大器 一、对功率放大器的要求和功率放大器的分类 二、提高驱动电源性能的措施 三、常见功率放大器 第三节 开环控制的伺服系统设计 一、系统方案设计 二、机械系统的设计计算 三、机械系统动态特性分析 四、系统误差分析 五、机械系统设计分析举例 六、控制系统设计 思考题与习题 第五章 直流伺服系统 第六章 交流伺服系统 第七章 位置伺服系统 第八章 伺服系统性能分析 参考文献 参考图书(二)作/译者:钱平出版社:机械工业出版社 出版日期:2005年02月 ISBN:9787111158394 [十位:7111158393] 页数:262 重约:0.433KG 定价:¥25.00 内容提要: 本书以数控机床伺服系统为对象,在阐述伺服系统原理等基础上,重点介绍了交直流电动机的速度控制系统、步进式伺服系统、直流伺服系统、交流伺服系统。还介绍了位置伺服系统的典型实例。 本书在着重基本概念与原理介绍的同时,注意实际应用。本书可作为机械设计制造及自动化专业应用型本科生的教材和参考书,也可供从事数控技术的工程技术人员参考使用。 图书目录: 第一章 概述 第一节 伺服系统的作用及组成 第二节 伺服系统的基本要求和特点 一 对伺服系统的基本要求 二 伺服系统的主要分类 第三节 伺服系统的分类 一 按调节理论分类 二 按使用的驱动元件分类 三 按进给驱动和主轴驱动分类 四 按反馈比较控制方式分类 习题和思考题 第二章 伺服控制基础知识 第一节 电力电子器件的应用 一 不可控器件 二 半控型器件 三 全控型器件 第二节 检验元件 一 速度检测 二 角度检测 三 位置检测 习题和思考题 第三章 步进电动机的控制 第一节 步进电动机的工作原理及驱动方法 一 步进电动机的种类 二 步进电动机的工作原理 三 步进电动机的种类 四 步进电动机驱动电源设计 五 步进电动机与微机的接口技术 第二节 步进电动机的开、闭环控制 一 步进电动机的开环控制 二 步进电动机的闭环控制 第三节 步进电动机的最佳点——位控制 第四节 步进电动机控制的程序设计 一 步进电动机控制信号的产生 二 步进电动机的运行控制及程序设计 习题和思考题 第四章 直流电动机调速系统 第一节 直流电动机概述 一 直流电动机的基本结构 二 永磁直流伺服电动机及工作原理 第二节 直流电动机的单闭环调速系统 一 调速的定义 二 直流电动机的调速方法 三 调速指标 四 单闭环直流调速方法 第三节 双闭环直流电动机调速系统 一 转速、电流双闭环调速系统的组成 二 转速、电流双闭环调速系统的工作原理 第四节 直流脉宽调速控制系统 一 概述 二 PWM调速系统的控制电路 第五节 转速、电充双闭环调速系统的工程设计法 一 工程设计方法的基本思路 二 典型系统及其参数与性能指标的关系 三 电流调节 四 转速环设计 五 转速调节器饱和限幅时的超调量和计算 …… 第五章 无刷直流电动机控制系统 第六章 异步电动机调速系统及主轴驱动 第七章 三相永磁同步伺服电动机的控制 第八章 进给伺服系统 第九章 基于DSP芯片为核心构成的伺服系统 参考文献 |
随便看 |
百科全书收录4421916条中文百科知识,基本涵盖了大多数领域的百科知识,是一部内容开放、自由的电子版百科全书。