词条 | 数理方程 |
释义 | 简介数学物理方程是指在物理学、力学、工程技术等问题中经过一些简化后所得到的、反映客观世界物理量之间关系的一些偏微分方程(有时也包括积分方程和某些常微分方程) 。 分类具体地说, 有三种常见的数理方程: ①反映波动现象的波动方程 ②反映输运过程的输运方程 ③反映稳定场 的方程- a2 ¨2 u = f ( x , y , z , t ) 。 解决方法需要指出的是,这些描述普遍规律的方程(又称为泛定方程) ,必须加上一定的初始条件和边界条件等定解条件才能求解。泛定方程加上定解条件构成定解问题。为方使起见, 这里以波动方程为例, 讨论数理方程的几种常用解法。这些解法包括行波法、分离变量法和积分变换法。其中行波法主要适用于求解无界区域的齐次波动方程的定解问题;分离变量法适用于解波动法方程、输运方程和稳定场方程等;积分变换法适用于无界区域或半无界区域的定解问题。 1 行波法 2 分离变量法 3 积分变换法 4 格林函数法 5 变分法 |
随便看 |
百科全书收录4421916条中文百科知识,基本涵盖了大多数领域的百科知识,是一部内容开放、自由的电子版百科全书。