请输入您要查询的百科知识:

 

词条 史福贵
释义

史福贵,男,北京理工大学数学学院副院长,教授,博士生导师。

出生年月

1962年9月

研究方向

模糊数学理论及其应用

社会兼职

中国数学会理事;中国模糊数学与模糊系统委员会常务理事;北京运筹学学会常务理事和监事长;北京数学会理事;

《Iranian Journal of Fuzzy Systems》(SCI)、《ISRN Geometry 》《Journal of Advanced Studies in Topology》、《数学研究期刊》和《模糊系统与数学》杂志编委;

《ZentralblattMath》杂志评论员。

个人概况

1962年9月生于黑龙江。87年于首都师范大学数学系硕士毕业后到牡丹江师院工作。93年调至烟台师院工作。95年破格晋升为副教授。97年破格晋升为教授。2001年于首都师范大学取得博士学位后来北京理工大学工作,数学学院教授、博士生导师。

主持国家自然科学基金《模糊拓扑在拟阵研究中的应用》一项,参加国家自然科学基金三项和山东省自然科学基金一项。现为中国数学会理事、中国模糊数学与模糊系统委员会常务理事、北京运筹学学会常务理事和监事长、北京数学会理事、《Zentralblatt Math》杂志的评论员,《Iranian Journal of Fuzzy Systems》(SCI)、《ISRN Geometry 》、《Journal of Advanced Studies in Topology》、《数学研究期刊》和《模糊系统与数学》杂志编委。在《Fuzzy Sets and Systems》、《Information Sciences》、《Computers and Mathematics with Applications》、《Journal of the Korean Mathematical Society》、《Iranian Journal of Fuzzy Systems》、《Hacettepe Journal of Mathematics and Statistics》、《J. Fuzzy Math.》、《科学通报》、《数学学报》、《数学进展》、《数学研究与评论》、《数学杂志》、《模糊系统与数学》等国内外刊物上发表论文100余篇。

其研究领域涉及模糊数学的L-模糊集理论、 L-模糊代数学、L-模糊拓扑学、L-模糊拟阵等理论。

突出贡献

(1) 提出了L\\alpha 集合套与L\\beta 集合套理论,给出了L-模糊集的表现定理和分解定理,它们能够应用到很多领域。

(2)在L-拓扑学的度量理论方面作了大量的工作,提出了模糊点式度量理论(包括模糊一致结构和模糊邻近结构等)和与之协调的分离公理。

(3)在L-拓扑学的紧性方面作了很多工作,借助于L-开集的不等式,给出了Lowen模糊紧性的等价表达,提出了一种新的S*-紧性。当L=[0,1]时,S*-紧性介于强模糊紧性和Lowen模糊紧性之间。

(4)给出了拟阵模糊化的新处理方法,提出了有组合优化背景的fuzzifying拟阵、L-拟阵和(L,M)-拟阵概念。

所授课程

高等代数,线性代数,近世代数,解析几何,高等几何,数学分析,高等数学,概率论与数理统计,拓扑学,拟阵论,模糊数学等。

项 目

主持国家自然科学基金《模糊拓扑在拟阵研究中的应用》,批准号:10971242。

参加国家自然科学基金《拓扑及其相关领域中若干问题的研究》,批准号:10371079。

参加国家自然科学基金《格值拓扑中若干问题的研究》,批准号:19971059。

参加国家自然科学基金《高速铁路列车运行调整的模糊随机混合智能优化理论与方法的研究》,批准号:61074151。

论 著

2007---2011近五年成果:

[1] Fu-Gui Shi, Run-Xiang Li,Semicompactness in L-fuzzy topological spaces, Annals of Fuzzy Mathematics andInformatics, Vol. 1, No. 2, pp. 163--169, 2011.

[2] Wei Yao, Fu-Gui Shi, Quantitativedomains via fuzzy sets: Part II: Fuzzy Scott topology on fuzzydirected-complete posets, Fuzzy Sets and Systems, vol. 173, no. 1, pp.60--80, 2011.

[3] Fu-Gui Shi, Measures of compactness inL-topological spaces, Annals of Fuzzy Mathematics and Informatics, Volume2, No. 2, pp. 163--169, (2011).

[4] Fu-Gui Shi, Regularity and normality of (L,M)-fuzzy topological spaces,Fuzzy Sets and Systems, Vol.182, no. 1, pp. 37--52, 2011.

[5] Hong-Yan Li, Fu-Gui Shi, Measures offuzzy compactness in L-fuzzy topological spaces, Computers and Mathematicswith Applications, vol. 59, no. 2, pp. 941–947, 2010.

[6] Xiu Xin, Fu-Gui Shi, Categories of bi-fuzzy pre-matroids, Computers andMathematics with Applications, vol. 59, no. 4, pp. 1548–1558, 2010.

[7] Hong-Yan Li, Fu-Gui Shi, Degrees offuzzy compactness in L-fuzzy topological spaces, Fuzzy Sets and Systems, vol.161, no. 7, pp. 988–1001, 2010.

[8] Fu-Gui Shi, (L,M)-Fuzzy $sigma$-Algebras, International Journal ofMathematics and Mathematical Sciences, Volume 2010 (2010), Article ID 356581,11 pages.

[9] Yueli Yue, Fu-Gui Shi, On fuzzypseudo-metric spaces, Fuzzy Sets and Systems, vol. 161, no. 8, pp. 1105–1116,2010.

[10] Xiu Xin, Fu-Gui Shi, Rank functions for closed and perfect [0,1]-matroids, Hacettepe Journal of Mathematics and Statistics, vol. 39,no. 1, pp. 31–39, 2010.

[11] Fu-Gui Shi, (L,M)-fuzzy metric spaces,Indian Journal of Mathematics, vol. 52, no. 2, pp. 231–250, 2010.

[12] Fu-Gui Shi, Measures of countable fuzzy compactness and the fuzzyLindeleof property, Bulletin of The Allahabad Mathematical Society, vol. 25,no. 1, pp. 47--56, 2010.

[13] Run-Xiang Li, Fu-Gui Shi,Countable compactness and the Lindelof property in L-fuzzy topological spaces,Proyecciones, vol. 29, no. 2, pp. 124--135, 2010.

[14] Chun-e Huang, Fu-Gui Shi, Fuzzy bases and the fuzzy dimension offuzzy vector spaces, Mathematical Communications, vol. 15, no. 2, pp. 303--310,2010.

[15] Wei Yao, Fu-Gui Shi, Basesaxioms and circuits axioms for fuzzifying matroids, Fuzzy Sets and Systems,vol. 161, no. 24, pp. 3155--3165, 2010.

[16] Fu-Gui Shi, (L, M)-fuzzy matroids, Fuzzy Sets and Systems, vol. 160,no. 16, pp. 2387--2400, 2009.

[17] Fu-Gui Shi, L-fuzzy interiorsand L-fuzzy closures, Fuzzy Sets and Systems, vol. 160, no. 9, pp. 1218--1232,2009.

[19] Fu-Gui Shi, Connectedness Degrees in L-Fuzzy Topological Spaces,International Journal of Mathematics and Mathematical Sciences, Volume2009 (2009), Article ID 892826, 11 pages.

[20] Fu-Gui Shi, A new approach to thefuzzification of matroids, Fuzzy Sets and Systems, vol. 160, no. 5, pp.696--705, 2009.

[23] Fu-Gui Shi, A new approach to fuzzy almost compactness, ProyeccionesJournal of Mathematics, 28(1): 75--87 (2009).

[24] Fu-Gui Shi, L-fuzzy interiors andL-fuzzy closures, Fuzzy Sets and Systems, vol. 160, no. 9, pp. 1218–1232, 2009.

[25] Fu-Gui Shi, P-compactness in L-topological spaces, The Journal ofnonlinear science and applications, 2(2009), no. 4, 225–233.

[26] Fu-Gui Shi, (L, M)-fuzzymatroids,Fuzzy Sets and Systems, vol. 160, no. 16, pp. 2387–2400, 2009.

[27] Xiu Xin, Fu-Gui Shi, M-Fuzzifying bases, Proyecciones, vol. 28, no. 3, pp.271–283, 2009.

[28] Hong-Yan Li, Fu-Gui Shi, Someseparation axioms in I-fuzzy topological spaces, Fuzzy Sets and Systems,159(5): 573--587 (2008).

[29] Han-Liang Huang, Fu-Gui Shi, L-fuzzy numbers and their properties, Information Sciences, 178(4): 1141--1151 (2008).

[30] Fu-Gui Shi, A new approach to fuzzyS-closedness, Indian Journal of Mathematics, 50(3): 647--661 (2008).

[31] Wei Yao, Fu-Gui Shi, A note on specialization L-preorder of L-topologicalspaces, L-fuzzifying topological spaces, and L-fuzzy topological spaces, FuzzySets and Systems, vol. 159, no. 19, pp. 2586--2595, 2008.

[32] Zhen-Guo Xu, Fu-Gui Shi, Some weaklymappings on intuitionistic fuzzy topological spaces, Tamkang Journal of Mathematics, vol. 39, no. 1, pp. 25--32, 2008.

[33] Hong-Yan Li, Fu-Gui Shi, OR-convergence and weak OR-convergence of netsand their applications, Proyecciones, vol. 27, no. 1, pp. 81--96,2008.

[34] Yueli Yue, Fu-Gui Shi, On (L,M)-fuzzy quasi-uniform spaces, Fuzzy Sets and Systems, 158(13): 1472--1485(2007).

[35] Fu-Gui Shi, A new definition of fuzzy compactness, Fuzzy Sets and Systems,158(13): 1486--1495 (2007).

[36] Fu-Gui Shi, Hong-Yan Li, A note on``On separation axioms in I-fuzzy topological spaces'', Fuzzy Sets and Systems,158(13): 1511--1513 (2007).

[37] Yueli Yue, Fu-Gui Shi, Generalized quasi-proximities, Fuzzy Sets andSystems, 158(4): 386--398 (2007).

[38] Zhen-Guo Xu, Fu-Gui Shi, A note onfuzzy $theta$-convergences, Fuzzy Sets and Systems, 158(4): 472--474 (2007).

[39] Yueli Yue, Fu-Gui Shi, L-fuzzy uniform spaces, Journal of the KoreanMathematical Society, vol. 44, no. 6, 1383--1396, 2007.

[40] SP-convergence in L-topologicalspaces, Tamkang Journal of Mathematics, vol. 38, no. 2, pp. 139--151, 2007.

[41] Hong-Yan Li, Fu-Gui Shi, Near S*-compactness in L-topological spaces,International Journal of Mathematics and Mathematical Sciences, vol. 2007,2007.

[42] Yueli Yue, Fu-Gui Shi, Generalizedquasi-proximities, Fuzzy Sets and Systems, vol. 158, no. 4, pp. 386--398, 2007.

2006年以前部分成果:

[43] Fu-Gui Shi, Chong-You Zheng,Metrization theorem in L-topological spaces, Fuzzy Sets and Systems,149(3): 455--471 (2005).

[44] Jie Zhang, Fu-Gui Shi, On L-fuzzy topological spaces, Fuzzy Sets andSystems, 149(3): 473--484 (2005).

[45] Fu-Gui Shi, The category of pointwiseS-proximity spaces, Fuzzy Sets and Systems, 152(2): 349--372 (2005).

[46] Fu-Gui Shi, A new notion of fuzzy compactness in L-topological spaces,Information Sciences, 173: 35--48 (2005).

[47] Fu-Gui Shi, $N_beta$-compactness inL-topological spaces, Fuzzy logic soft computing and computationalintelligence(11th IFSA World Congress), 268--272 (2005).

[48] Fu-Gui Shi, Semicompactness in L-Topological Spaces, International Journalof Mathematics and Mathematical Sciences, 12: 1869--1878 (2005).

[49] Fu-Gui Shi, A new form of fuzzy$beta$-compactness, Proyecciones Journal of Mathematics, 24(2): 105--119(2005).

[50] Fu-Gui Shi, $S_beta$-compactness in L-topological spaces, Proyecciones Journal of Mathematics, 24(2): 153--165 (2005).

[51] Fu-Gui Shi, Pointwise pseudo-metric onthe L-real line, Iranian Journal of Fuzzy Systems, 2(2): 15--20 (2005).

[52] Fu-Gui Shi, Countable compactness and the Lindeleof property of L-sets,Iranian Journal of Fuzzy Systems, 1(1): 79--88 2004.

[53] 徐振国, 史福贵, L-拓扑空间的强拟半开集, 模糊系统与数学, 18(增刊): 107--109(2004).

[54] Fu-Gui Shi, Fuzzy proximities and totally bounded pointwise uniformities,Fuzzy Sets and Systems, 133(3): 321--331 (2003).

[55] Fu-Gui Shi, O-convergence of fuzzynets and its applications, Fuzzy Sets and Systems, 140(3): 499--507 (2003).

[56] Fu-Gui Shi, Chong-You Zheng, Paracompactness in L-fuzzy topologicalspaces, Fuzzy Sets and Systems, 129(1): 29--37 (2002).

[57] 史福贵,郑崇友,格上点式一致结构与度量化定理, 数学学报, 45(6): 1127--1136 (2002).

[58] Fu-Gui Shi, Products of Pointwise Pseudo-Quasi-Metrics on Lattices, 数学研究与评论,2002.4.

[59] Fu-Gui Shi, Product operations offuzzy pointwise metric spaces, J. Fuzzy Mathematics, 2001.2.

[60] 史福贵, 可数良紧性刻画与性质, 数学杂志, 21(4): 429--432 (2001).

[61] Fu-Gui Shi, Chong-You Zheng, Totallybounded pointwise uniformities and proximities on completely distributivelattices, 数学进展, 30(4): 322--328 (2001).

[62] Fu-Gui Shi, A note on the compactness in L-fuzzy topological spaces, Fuzzy Sets and Systems, 119(3): 547--548 (2001).

[63] Fu-Gui Shi, Pointwise pseudo-metricsin L-fuzzy set theory, Fuzzy Sets and Systems, 121(2): 209--216 (2001).

[64] 史福贵,完全分配格上的点式拟一致构与p.q.度量, 数学学报, 39(5): 701--706 (1996).

[65] 史福贵,完全分配格上的点式一致结构, 数学进展, 26(1):22--28 (1997).

[66] Fu-Gui Shi,Pointwise uniformities and metrics on fuzzy lattices, ChineseScience Bulletin, 1997.

[67] 史福贵,孟广武,点式拟一致结构与拓扑, 模糊系统与数学, 12(1): 41--44 (1998).

[68] Fu-Gui Shi, Pointwise uniformities in fuzzy set theory, Fuzzy Setsand Systems, 98(1): 141--146 (1998).

[69] Fu-Gui Shi, Fuzzy pointwise completeregularity and imbedding theorem, J. Fuzzy Mathematics, 1999.2.

[70] Fu-Gui Shi, L-Fuzzy relations and L-fuzzy subgroups, J. FuzzyMathematics, 2000.8(2).

随便看

 

百科全书收录4421916条中文百科知识,基本涵盖了大多数领域的百科知识,是一部内容开放、自由的电子版百科全书。

 

Copyright © 2004-2023 Cnenc.net All Rights Reserved
更新时间:2025/2/15 14:25:26