请输入您要查询的百科知识:

 

词条 实变函数论
释义

实变函数论(real function theory)19世纪末20世纪初形成的数学分支。起源于古典分析,主要研究对象是自变量(包括多变量)取实数值的函数,研究的问题包括函数的连续性、可微性、可积性、收敛性等方面的基本理论,是微积分的深入和发展。因为它不仅研究微积分中的函数,而且还研究更为一般的函数,并且得到了较微积分中相应理论更为深刻、更为一般从而应用更为广泛的结论,所以实变函数论是现代分析数学各个分支的基础。

简介

19世纪末20世纪初形成的一个数学分支,它的最基本内容已成为分析数学各分支的普遍基础。实变函数主要指自变量(也包括多变量)取实数值的函数,而实变函数论就是研究一般实变函数的理论。在微积分学中,主要是从连续性、可微性、黎曼可积性三个方面来讨论函数(包括函数序列的极限函数)。如果说微积分学所讨论的函数都是性质“良好”的函数(例如往往假设函数连续或只有有限个间断点),那么,实变函数论是从连续性、可微性、可积性三个方面讨论最一般的函数,包括从微积分学来看性质“不好”的函数。它所得到的有关的结论自然也适用于性质“良好”的函数。实变函数论是微积分学的发展和深入。函数可积性的讨论是实变函数论中最主要的内容。它包括H.L.勒贝格的测度、可测集、可测函数和积分以及少许更一般的勒贝格-斯蒂尔杰斯测度和积分的理论(见勒贝格积分)。这种积分比黎曼积分是更为普遍适用和更为有效的工具,例如微积分基本定理以及积分与极限变换次序。精美的调和分析理论(见傅里叶分析)就是建立在勒贝格积分的基础上的。此外,还适应特殊的需要而讨论一些特殊的积分。例如为讨论牛顿-莱布尼茨公式而有佩隆积分。由于有了具有可列可加性的测度和建立在这种测度基础上的积分,导致了与微积分中函数序列的点点收敛和一致收敛不同的一些新的重要收敛概念的产生,它们是几乎处处收敛、度量收敛(亦称依测度收敛)、积分平均收敛等。度量收敛在概率论中就是依概率收敛,且具有特别重要的地位。积分平均收敛在一般分析学科中也是常用的重要收敛。傅里叶级数理论以及一般的正交级数理论就是以积分的平方平均收敛为基本的收敛概念。一般正交级数的无条件收敛问题在实变函数论中也有所讨论。

在函数连续性方面,实变函数论考察了例如定义在直线的子集М(不必是区间)上的函数的不连续点的特征:第一类不连续点最多只有可列个,第二类不连续点必是可列个(相对于М的)闭集的并集(也称和集)的结论;还讨论怎样的函数可以表示成连续函数序列处处收敛的极限,引入半连续函数,更一般地是引入贝尔函数,并讨论它们的结构。

与研究函数连续性密切相关的就是讨论各类重要的点集如□,更一般的是波莱尔集及其结构。解析集合论就是在深入讨论波莱尔集和勒贝格可测集相互关系基础上形成的一个数学分支。实变函数论在函数可微性方面所获得的结果是非常深刻的。设□(□)是定义在(□,□)上的、在每点取有限值的实函数。对于每个□□□□(□,□),引入四个数:□,□,□,□,分别称□为□(□)在□ 处的右方上(下)导数,左方上(下)导数。这四个数(可以是无限大)都相等且有限时,就称□(□)在□处是可导的。历史上人们曾以为[□,□]上任何连续函数□(□)都至少有一点是可导的,后来K.(T·W)外尔斯特拉斯举出了一个反例:□,式中0□。它是连续的,而在任何一点处都是不可导的。但А·当儒瓦、W·Н·杨和S·萨克斯证明了:对(□,□)上每点取有限值的实函数,必有勒贝格测度是零的集□,使得对任何□□□,下面三种情况必有一种出现。①□在□处有有限导数。②在□处的异侧的某两个导数是同一个有限数;另两个异侧导数必定一个是+∞,另一个是-∞。③两个上导数都是+∞,两个下导数都是-∞。由这个定理又可推出如下重要结果:设□(□)是[□,□]上单调函数,那么除去一个勒贝格测度是零的集□外,□必定存在且有限。

在实变函数论中还考虑可导点集的特征,多元函数的微分问题以及其他的一些导数概念和不同导数之间的关系。实变函数论不仅应用广泛,是某些数学分支的基本工具,而且它的观念和方法以及它在各个数学分支的应用,对形成近代数学的一般拓扑学和泛函分析两个重要分支有着极为重要的影响。

产生

实变函数论的产生

微积分产生于十七世纪,到了十八世纪末十九世纪初,微积分学已经基本上成熟了。数学家广泛地研究并建立起它的许多分支,是它很快就形成了数学中的一大部门,也就是数学分析。

也正是在那个时候,数学家逐渐发现分析基础本身还存在着很多问题。比如,什么是函数这个看上去简单而且十分重要的问题,数学界并没有形成一致的见解。以至长期争论者问题的这样和那样的解答,这样和那样的数学结果,弄不清究竟谁是正确的。又如,对于什么是连续性和连续函数的性质是什么,数学界也没有足够清晰的理解。

十九世纪初,曾经有人试图证明任何连续函数除个别点外总是可微的。后来,德国数学家维尔斯特拉斯提出了一个由级数定义的函数,这个函数是连续函数,但是维尔斯特拉斯证明了这个函数在任何点上都没有导数。这个证明使许多数学家大为吃惊。

由于发现了某些函数的奇特性质,数学家对函数的研究更加深入了。人们又陆续发现了有些函数是连续的但处处不可微,有的函数的有限导数并不黎曼可积;还发现了连续但是不分段单调的函数等等。这些都促使数学家考虑,人们要处理的函数,仅仅依靠直观观察和猜测是不行的,必须深入研究各种函数的性质。比如,连续函数必定可积,但是具有什么性质的不连续函数也可积呢?如果改变积分的定义,可积分条件又是什么样的?连续函数不一定可导,那么可导的充分必要条件由是什么样的?……

上面这些函数性质问题的研究,逐渐产生了新的理论,并形成了一门新的学科,这就是实变函数。

内容

综述

以实数作为自变量的函数就做实变函数,以实变函数作为研究对象的数学分支就叫做实变函数论。它是微积分学的进一步发展,它的基础是点集论。什么是点集论呢?点集论是专门研究点所成的集合的性质的理论。也可以说实变函数论是在点集论的基础上研究分析数学中的一些最基本的概念和性质的。比如,点集函数、序列、极限、连续性、可微性、积分等。实变函数论还要研究实变函数的分类问题、结构问题。

实变函数论的内容包括实值函数的连续性质、微分理论、积分理论和测度论等。这里我们只对它的一些重要的基本概念作简要的介绍。

实变函数论的积分理论研究各种积分的推广方法和它们的运算规则。由于积分归根到底是数的运算,所以在进行积分的时候,必须给各种点集以一个数量的概念,这个概念叫做测度。

测度

什么是测度呢?简单地说,一条线段的长度就是它的测度。测度的概念对于实变函数论十分重要。集合的测度这个概念实由法国数学家勒贝格提出来的。

为了推广积分概念,1893年,约当在他所写的《分析教程》中,提出了“约当容度”的概念并用来讨论积分。1898年,法国数学家波莱尔把容度的概念作了改进,并把它叫做测度。波莱尔的学生勒贝格后来发表《积分、长度、面积》的论文,提出了“勒贝格测度”、“勒贝格积分”的概念。勒贝格还在他的论文《积分和圆函数的研究》中,证明了有界函数黎曼可积的充分必要条件是不连续点构成一个零测度集,这就完全解决了黎曼可积性的问题。

勒贝格积分可以推广到无界函数的情形,这个时候所得积分是绝对收敛的,后来由推广到积分可以不是绝对收敛的。从这些就可以看出,勒贝格积分比起由柯西给出后来又由黎曼发扬的老积分定义广大多了。也可以看出,实变函数论所研究的是更为广泛的函数类。

自从维尔斯特拉斯证明连续函数必定可以表示成一致收敛的多项式级数,人们就认清连续函数必定可以解析地表达出来,连续函数也必定可以用多项式来逼近。这样,在实变函数论的领域里又出现了逼近论的理论。

逼近理论

什么是逼近理论呢?举例来说,如果能把 A类函数表示成 B类函数的极限,就说 A类函数能以 B类函数来逼近。如果已经掌握了 B类函数的某些性质,那么往往可以由此推出 A类函数的相应性质。逼近论就是研究那一类函数可以用另一类函数来逼近、逼近的方法、逼近的程度和在逼近中出现的各种情况。

和逼近理论密切相关的有正交级数理论,三角级数就是一种正交级数。和逼近理论相关的还有一种理论,就是从某一类已知函数出发构造出新的函数类型的理论,这种理论叫做函数构造论。

作用

总之,实变函数论和古典数学分析不同,它是一种比较高深精细的理论,是数学的一个重要分支,它的应用广泛,它在数学各个分支的应用是现代数学的特征。实变函数论不仅应用广泛,是某些数学分支的基本工具,而且它的观念和方法以及它在各个数学分支的应用,对形成近代数学的一般拓扑学和泛函分析两个重要分支有着极为重要的影响。

运用

(L)测度这一工具,通过引入列导数(或导出数)的概念,在研究函数的可微性方面获得了一系列深刻的结果,单调可微定理就是其中之一,意义在[a,b]上的单调函数在[a,b]E上处处可导,且导函数在[a,b]上是(L)可积的(这里E表示[a,b]中(L)测度为零的子集),此外,也可利用(L)积分的理论和点集分析的方法讨论多元实变函数的微分问题。在收敛性方面 ,实变函数论利用(L)测度和(L)积分工具,引入了几乎处处收敛、依测度收敛(或度量收敛)和积分平均收敛等概念。依测度收敛就是概率论中的依概率收敛,在概率论中具有重要的地位,而积分平均收敛在分析数学中是刻划收敛性态时常用的工具之一,傅里叶级数理论以及一般正交级数理论中就是以均方收敛为基本收敛概念的。实变函数论不仅在现代数学,尤其是分析数学中有着广泛的应用,而且它的理论和方法对于形成近代数学的其他分支,例如拓扑学、泛函分析有直接的影响。

分支学科

算术、初等代数、高等代数、数论、欧式几何、非欧几何、解析几何、微分几何、代数几何学、射影几何学、拓扑学、分形几何、微积分学、概率和数理统计、复变函数论、泛函分析、偏微分方程、常微分方程、数理逻辑、模糊数学、运筹学、计算数学、突变理论、数学物理学。

图书信息

图书概况

书 名: 实变函数论

作 者:徐新亚

出版社:同济大学出版社

出版时间:2010-3-1

ISBN: 9787560842462

开本:16开

定价: 32.00元

内容简介

本书是作者在多年从事实变函数教学实践所积累的大量实际教学经验的基础上编写而成的。全书对实变函数中的主要概念和定理作了细致的解释和比较直观的描述,叙述深入浅出,易学好懂。内容包括集合、点集、可测集合、可测函数、Lebesgue积分、微分与不定积分的函数空间。在有关定理的证明时,尽可能地对其证题思路进行分析和引导,从而极大地降低了理解难度。在例题的选取方面,注意到了难度上的阶梯配置,由浅入深,循序渐进。另外每一章末还配备了一定数量的习题,为学生课后的学习巩固提供了有益的帮助。

本书可用作普通高等院校数学类本专科学生的教材或考研复习参考书,也可用作理工科有关专业的研究生教材,还可供有关教师及研究人员参考。

图书目录

前言

1 可数集合与不可数集合

1.1 集合及其运算

1.2 集合的对等与基数

1.3 可数集合

1.4 不可数集合

1.5 半序集与Zorn引理

习题1

2 点集

2.1 度量空间点集的概念

2.2 点的分类

2.3 开集与闭集

2.4 开集和闭集的结构

习题2

3 可测集合

3.1 点集的外测度与内测度

3.2 可测集合

3.3 可测集类

3.4 乘积空间中点集的可测性

3.5 广义测度

习题3

4 可测函数

4.1 可测函数的定义及简单性质

4.2 叶果洛夫(Egoroff)定理

4.3 可测函数与连续函数之间的关系

4.4 依测度收敛

5 Lebesgue积分

5.1 函数的振幅与Riemann积分

5.2 有限测度集上有界函数的Lebesgue积分

5.3 Lebesgue积分的推广

5.4 L积分的极限定理

5.5 广义R积分与广义L积分

5.6 重积分与累次积分

习题5

6 微分与不定积分

6.1 单调函数的可微性

6.2 有界变差函数

6.3 Lebesgue不定积分

6.4 斯蒂捷(Stieltjes)积分

习题6

7 函数空间

7.1 Lp空间

7.2 Hilbert空间L2(E)

习题7

参考文献

清华大学出版社图书

图书信息

书名:实变函数论

ISBN:9787302195320

作者:徐森林

定价:39.8元

出版日期:2009-8-1

出版社:清华大学出版社

图书简介

全书共分4章.第1章主要介绍集合论的基本知识、几个重要的集类.着重用势研究实函数.详细论证了Baire定理,并给出了它的应用.第2章和第3章比较完整地阐明一般测度理论和积分理论.突出描述了Lebesgue测度与Lebesgue积分理论,以及Lebesgue?Stieltjes测度与Lebesgue?Stieltjes积分理论.第4章引进了Banach空间(Lp,‖·‖p)(p≥1)和Hilbert空间(L2,〈,〉)并证明了一些重要定理.书中配备了大量的例题、练习题和复习题,可以训练学生分析问题和解决问题的能力,帮助他们打下分析数学和测度论方面扎实的数学基础.

本书可作为综合性大学、理工科大学和师范类院校的基础数学、应用数学、概率统计和计算数学专业的教材或自学参考书.

前言

在近三十多年中,作者曾多次讲授“实变函数”课程,先采用复旦大学夏道行教授等编著的《实变函数论与泛函分析》,后又采用北京大学周民强教授编著的《实变函数》作为教材.这两本书各有其特点和侧重面.复旦的书侧重于一般的测度理论和积分理论,这有利于概率统计专业学生对后续知识的学习和研究; 北大的书侧重于分析数学能力的训练,尤其是书中配有一定难度的习题,能引起爱好数学的学生的兴趣并激起他们极大的学习热情,且能增强他们做难题的能力,激励他们对数学进行深入的学习和研究.本书博采两家之长处,力求为数学和概率统计专业的学生提供丰富的精神食粮.

全书共分4章.第1章主要介绍集合论的基本知识、几个重要的集类.着重用势研究实函数.由于势的引入,许多函数(例如凸(凹)函数、单调函数、有界变差函数、绝对连续函数)的性质(如连续性、可导性等)、连续函数的可导点集的结构、连续函数列的极限函数的性质以及导函数连续点集的稠密性等均可被深入研究清楚.在第1章中,还研究了Borel集类、Cantor疏朗三分集和Cantor函数,并证明了重要的Baire定理和闭集上连续函数的延拓定理.这些知识和定理有着广泛的应用,也是培养学生分析能力的基础.

第2章和第3章比较完整地论述了一般测度理论和积分理论,并详细描述了Lebesgue测度与Lebesgue积分理论,以及Lebesgue?Stieltjes测度与Lebesgue?Stieltjes积分理论,使读者学过之后既能有抽象的理论水平,具备高观点,又能掌握大量的具体的实例,不致飘在空中.这两章内容极为丰富.在引进几乎处处收敛、依测度收敛等概念后,证明了重要的Д.Ф.Eгоров定理、H.H.Лузин定理、Lebesgue控制收敛定理、Levi引理、Fatou引理、Vitali覆盖定理和Fubini定理,还讨论了Lebesgue积分和Riemann积分之间的联系和区别.应用绝对连续函数的知识,还给出了Newton?Leibniz公式成立的充要条件.

同时给出了条件弱于数学分析中的分部积分、积分第一(第二)中值公式、换元公式的论证.Hausdorff测度和Hausdorff维数的知识在近代微分几何、分形几何中都有广泛的应用.这部分内容不必在正课中讲授,可作为学生的课外阅读材料,是为了开阔他们的视野.

第4章,在Lp(p≥1)空间上引入模‖·‖p,使其成为Banach空间; 在L2空间上引入内积〈,〉,使其成为Hilbert空间.并研究该空间中函数列的收敛(即p次幂平均收敛)性、完备性和可分性.特别地,还研究了L2中的规范正交系及其封闭性、完全性,为进一步学习泛函分析及其他高层次的数学知识打下了坚实的基础.

阅读本书,可以分三个不同的水平和层次.第一个层次是只要熟读书中内容和例题,已可达到相当高的水平; 第二个层次是将练习题和部分复习题做好,其中有些题具有相当的难度,经此训练,读者可成为高水平的大学生; 第三个层次是为少数优等生设置的,他们除了要做一般的练习题外,还必须努力去完成书中各章后面复习题中所有的难题.这样可以训练读者的独立思考和独立研究能力,也是数学创新思维的源泉.中国科学技术大学数学系771班的李岩岩就是做实变难题的典型代表,他凭自己坚实的实变功底在偏微分方程方向作出了杰出的贡献,发表了高水平论文110余篇,是世界上论文高引率作者之一.他曾在2002年国际数学家大会上作过45分钟报告.

在本书的编写过程中,作者参考和引用了书后所列文献中的一些内容和习题.在此向各书的作者致谢.

实变函数是培养学生研究能力的一门极其重要的基础课.也是数学系最难的一门基础课.为了让更多的学生学好这门课,我们将尽快出版一本实变函数指导书,给出本书中难题的解答.

在编写本书的过程中,得到了中国科学技术大学数学系领导和教师们的热情鼓励和大力支持,作者谨在此对他们表示诚挚的感谢.

还要特别感谢的是清华大学出版社的刘颖博士和陈明博士,他们为本书的出版提供了热情的帮助和建设性的意见.

目录

第1章集合运算、集合的势、集类

1.1集合运算及其性质

1.2集合的势(基数)、用势研究实函数

1.3集类.环、σ环、代数、σ代数、单调类

1.4Rn中的拓扑——开集、闭集、Gδ集、Fσ集、Borel集

1.5Baire定理及其应用

1.6闭集上连续函数的延拓定理、Cantor疏朗三分集、Cantor函数

第2章测度理论

2.1环上的测度、外测度、测度的延拓

2.2σ有限测度、测度延拓的惟一性定理

2.3Lebesgue测度、Lebesgue?Stieltjes测度

*2.4Jordan测度、Hausdorff测度

2.5测度的典型实例和应用

第3章积分理论

3.1可测空间、可测函数

3.2测度空间、可测函数的收敛性、Lebesgue可测函数的结构

3.3积分理论

3.4积分收敛定理(Lebesgue控制收敛定理、Levi引理、Fatou引理)

3.5Lebesgue可积函数与连续函数、Lebesgue积分与Riemann积分

3.6单调函数、有界变差函数、Vitali覆盖定理

3.7重积分与累次积分、Fubini定理

3.8变上限积分的导数、绝对(全)连续函数与Newton?Leibniz公式

*3.9Lebesgue?Stieltjes积分、Riemann?Stieltjes积分

第4章函数空间Lp(p≥1)

4.1Lp空间

4.2L2空间

参考文献

随便看

 

百科全书收录4421916条中文百科知识,基本涵盖了大多数领域的百科知识,是一部内容开放、自由的电子版百科全书。

 

Copyright © 2004-2023 Cnenc.net All Rights Reserved
更新时间:2025/1/9 17:21:00