词条 | 氢 |
释义 | 氢是一种化学元素,在元素周期表中位于第一位。它的原子是所有原子中最小的。氢通常的单质形态是氢气。它是无色无味无臭,极易燃烧的由双原子分子组成的气体,氢气是最轻的气体。 中文名:氢 外文名:Hydrogen 拼音:qīng 化学符号:H 原子质量:1.00794u 原子序数:1 简介氢氢是原子序数为1的化学元素,化学符号为H,在元素周期表中位于第一位。其原子质量为1.00794u,是最轻的,也是宇宙中含量最多的元素,大约占据宇宙质量的75%[1]。主星序上恒星的主要成分都是等离子态的氢。而在地球上,自然条件形成的游离态的氢单质相对罕见。 氢最常见的同位素是氕(piē,这个名称并不常用),含1个质子,不含中子。在离子化合物中,氢原子可以得一个电子成为氢阴离子(以 H表示) 构成氢化物,也可以失去一个电子成为氢阳离子(以 H表示,简称氢离子),但氢离子实际上以更为复杂的形式存在。氢与除稀有气体外的几乎所有元素都可形成化合物,存在于水和几乎所有的有机物中。它在酸碱化学中尤为重要,酸碱反应中常存在氢离子的交换。氢作为最简单的原子,在原子物理中有特别的理论价值。对氢原子的能级、成键等的研究在量子力学的发展中起了关键作用。 氢气氢气 (H2)最早与16世纪初被人工合成,当使用的方法是将金属置于强酸中。1766–81年,亨利·卡文迪许发现氢气是一种与以往所发现气体不同的另一种气体[2] ,在燃烧时产生水,这一性质也决定了拉丁语 “hydrogenium” 这个名字(“生成水的物质”之意)。常温常压下,氢气是一种极易燃烧,无色透明、无臭无味的气体。[3] 的氢原子则有极强的还原性。在高温下氢非常活泼。除稀有气体元素外,几乎所有的元素都能与氢生成化合物。 最轻的气体——氢气氢是元素周期表中的第一号元素,它的原子是118(一说119)个元素中最小的一个。由于它又轻又小,所以跑得最快,如果人们让每种元素的原子进行一场别开生面的赛跑运动,那么冠军非氢原子莫属。 氢气是最轻的气体,它的“体重”还不到空气的十四分之一,它的这种特点,很早就引起了人们的兴趣。在1780年时,法国一名化学家便把氢气充入猪的膀胱中,制成了世界上第一个、也是最原始的氢气球,它冉冉地飞向了高空。 物理属性基本属性【物质状态】:气态 【元素在太阳中的含量(%)】:75 【地壳中含量】:(%)1.5 【大气含量】:0.0001 % 【质子质量】:1.673E-27 【质子相对质量】:1.00794 【所属周期】:1 【所属族数】:IA 【摩尔质量】:1g/mol 【氢化物】:无 【氧化物】:H₂O 【最高价氧化物】:H₂O 原子属性【外围电子排布】:1s1 【核外电子排布】:1 【电子层】:K 【原子量】:1.00794 【原子半径】:(计算值)25(53)pm 【共价半径】:37 pm 【范德华半径】:120 pm 具体性质【颜色】:常温下为无色气体 【熔点】:14.025 K (-259.125 °C) 【沸点】:20.268 K (-252.882 °C) 【摩尔体积】:22.4L/mol 【汽化热】:0.44936 kJ/mol 【熔化热】:0.05868 kJ/mol 【蒸气压】:209 帕斯卡(23K) 【声在其中传播的速度】:1270 m/s(293.15K) 【电离能】:(kJ /mol)M - M+ 1312 【密度、硬度】:0.0899 kg/m3(273K)、NA 【热导率】: W/(m·K)180.5 【化学键能】:(kJ /mol) 化学键 键能(KJ/mol) H-H 454 H-F 566 H-Cl 431 H-Br 366 H-I 299晶胞参数: a = 470 pm b = 470 pm c = 340 pm α = 90° β = 90° γ = 120° 【晶体结构】:六角形 【电负性】:2.2(鲍林标度) 【比热】:14304 J/(kg·K) 【热导率】:0.1815 W/(m·K) 【电离能】:1312 kJ/mol 【CAS号】:133-74-0 同位素氢在自然界中存在的同位素有: 氕(氢1,H) 氘(氢2,重氢,D) 氚(氢3,超重氢,T) 以人工方法合成的同位素有: 氢4、氢5、氢6、氢7 氘的元素符号为D,氚的元素符号为T。 氕(氢-1)氕的原子核只有一个质子,丰度达99.98% ,是构造最简单的的原子。 氘(氢-2)氘为氢的一种稳定形态同位素,也被称为重氢,元素符号一般为2H或D。它的原子核由一颗质子和一颗中子组成。在大自然的含量约为一般氢的7000分之一。 氚(氢-3)氚,亦称超重氢,是氢的同位素之一,元素符号为T或3H。它的原子核由一颗质子和两颗中子所组成,并带有放射性,会发生β衰变,其半衰期为12.43年。 氢-4氢4-是氢的同位素之一,它包含了质子和三个中子。在实验室里,是用氘的原子核来轰炸氚的原子核,来合成一个氢4的原子核。在这过程中,氚的原子核会从氘的原子核上吸收一个中子。氢4的质量为4.0279121U,半衰期为9.93696x10-22秒。 氢-4.1氢-4.1结构上类似氦,它包含了2个质子和2个中子,但因其中一个电子被渺子,但由于渺子的轨道特殊,轨道非常接近原子核,而最内侧的电子轨道与渺子的轨道相较之下在很外侧,因此,该渺子可视为原子核的一部份,所以整个原子可视为:原子核由1个渺子、2个质子和2个中子组成、外侧只有一个电子,因此可以视为一种氢的同位素,也是一种奇异原子。一个渺子重约0.1U,故名氢- 4.1(4.1H)。氢-4.1原子可以与其他元素反应,和行为更像一个氢原子不是像惰性的氦原子。 氢-5氢-5是氢的同位素之一,它的原子核包含了四个中子和一个质子,在实验室里用一个氚的原子核来轰炸氚,这让氚吸收两个氚原子核的质子而形成了氢5。氢5的半衰期非常短,只有8.01930×10-22秒。 氢-6氢-6是不稳定的氢同位素之一,它包含了一个质子和五个中子,半衰期为3×10-22秒。 氢-7氢-7是不稳定的氢同位素之一,它包含了一个质子和六个中子, 图表符号 质子数 中子数 原子质量单位(u) 半衰期 原子核自旋 丰度 丰度的变化率 1H 1 0 1.00782503207(10) 稳定 [>2.8×1023 年] 1/2+ 0.999885(70) 0.999816-0.999974 2H 1 1 2.0141017778(4) 稳定 1+ 0.000115(70) 0.000026-0.000184 3H 1 2 3.0160492777(25) 12.32(2) 年 1/2+ 4H 1 3 4.02781(11) 1.39(10)×10-22 s [4.6(9) MeV] 2- 5H 1 4 5.03531(11) >9.1×10-22 s (1/2+) 6H 1 5 6.04494(28) 2.90(70)×10-22 s [1.6(4) MeV] 2-# 7H 1 6 7.05275(108)# 2.3(6)×10-23# s [20(5)# MeV] 1/2+# 发现早在十六世纪,瑞士的一名医生就发现了氢气。他说:“把铁屑投到硫酸里,就会产生气泡,像旋风一样腾空而起。”他还发现这种气体可以燃烧。然而他是一位著名的医生,病人很多,没有时间去做进一步的研究。 十七世纪时又有一位医生发现了氢气。那时人们的智慧被一种虚假的理论所蒙弊,认为不管什么气体都不能单独存在,既不能收集,也不能进行测量。这位医生认为氢气与空气没有什么不同,很快就放弃了研究。 最先把氢气收集起来并进行认真研究的是在1766年英国的一位化学家卡文迪什。 卡文迪什非常喜欢化学实验,有一次实验中,他不小心把一个铁片掉进了盐酸中,他正在为自己的粗心而懊恼时,却发现盐酸溶液中有气泡产生,这个情景一下子吸引了他,刚才的气恼心情全没了。他在努力地思考:这种气泡是从哪儿来的呢?它原本是铁片中的呢,还是存在于盐酸中呢?他又做了几次实验,把一定量的锌和铁投到充足的盐酸和稀硫酸中(每次用的硫酸和盐酸的质量是不同的),发现所产生的气体量是固定不变的。这说明这种新的气体的产生与所用酸的种类没有关系,与酸的浓度也没有关系。 卡文迪什用排水法收集了新气体,他发现这种气体不能帮助蜡烛的燃烧,也不能帮助动物的呼吸,如果把它和空气混合在一起,一遇火星就会爆炸。卡文迪什是一位十分认真的化学家,他经过多次实验终于发现了这种新气体与普遍空气混合后发生爆炸的极限。他在论文中写道:如果这种可燃性气体的含量在9.5%以下或65%以上,点火时虽然会燃烧,但不会发出震耳的爆炸声。 随后不久他测出了这种气体的比重,接着又发现这种气体燃烧后的产物是水,无疑这种气体就是氢气了。卡文迪什的研究已经比较细致,他只需对外界宣布他发现了一种氢元素并给它起一个名称就行了,真理的大门就要向他敞开了,幸运之神就要向他微笑了。 但卡文迪什受了虚假的“燃素说”的欺骗,坚持认为水是一种元素,不承认自己无意中发现了一种新元素,真是非常可惜。 后来拉瓦锡听到了这件事,他重复了卡文迪什的实验,认为水不是一种元素而是氢和氧的化合物。在1787年,他正式提出“氢”是一种元素,因为氢燃烧后的产物是水,便用拉丁文把它命名为“水的生成者”。 分布在地球上和地球大气中只存在极稀少的游离状态氢。在地壳里,如果按重量计算,氢只占总重量的1%,而如果按原子百分数计算,则占17%。氢在自然界中分布很广,水便是氢的“仓库”——水中含11%的氢;泥土中约有1.5%的氢;石油、天然气、动植物体也含氢。在空气中,氢气倒不多,约占总体积的一千万分之五。在整个宇宙中,按原子百分数来说,氢却是最多的元素。据研究,在太阳的大气中,按原子百分数计算,氢占81.75%。在宇宙空间中,氢原子的数目比其他所有元素原子的总和约大100倍。 氢气的制备工业制法水煤气法:C(s)+H2O(g)=CO(g)+H2(g) CO(g)+H2O(g)=(催化剂)=CO2(g)+H2(g) 除此之外,还有电解法、烃裂解法、烃蒸气转化法等。 实验室制法锌与稀硫酸反应 Zn+H2SO4=ZnSO4+H2↑ 若用盐酸,制得的氢气中可能会混有HCl气体,因为稀盐酸也有一定的挥发性 其他制法Fe+H2SO4=FeSO4+H2↑(反应速度较慢) Mg+H2SO4=MgSO4+H2↑(反应速度太快) 2Al+3H2SO4=Al2(SO4)3+H2↑ Fe+2HCl=FeCl2+H2↑ Fe+H2SO4=FeSO4+H2↑ Mg+2HCl=MgCl2+H2↑ Mg+H2SO4=MgSO4+H2↑ Zn+2HCl=ZnCl2+H2↑ Zn+H2SO4=ZnSO4+H2↑ 2Al+6HCl=2AlCl3+3H2↑ 2Al+2NaOH+6H2O=2Na[Al(OH)4]+3H2↑ 纯化随着半导体工业、精细化工和光电纤维工业的发展,产生了对高纯氢的需求。例如,半导体生产工艺需要使用99.999%以上的高纯氢。但是目前工业上各种制氢方法所得到的氢气纯度不高,为满足工业上对各种高纯氢的需求,必须对氢气进行进一步的纯化。氢气的纯化方法大致可分为两类(物理法和化学法), 氢气提纯方法主要有低温吸附法,低温液化法,金属氢化物氢净化法;此外还有钯膜扩散法,中空纤维膜扩散法和变压吸附法等六种方法。 用途氢是重要工业原料,如生产合成氨和甲醇,也用来提炼石油,氢化有机物质作为收缩气体,用在氧氢焰熔接器和火箭燃料中。在高温下用氢将金属氧化物还原以制取金属较之其他方法,产品的性质更易控制,同时金属的纯度也高。广泛用于钨、钼、钴、铁等金属粉末和锗、硅的生产。由于氢气很轻,人们利用它来制作氢气球。(注意:目前出于安全考虑,一般用氦气作为原料制造氢气球。)氢气与氧气化合时,放出大量的热,被利用来进行切割金属。 具体介绍利用氢的同位素氘和氚的原子核聚变时产生的能量能生产杀伤和破坏性极强的氢弹,其威力比原子弹大得多。 现在,氢气还作为一种可替代性的未来的清洁能源,用于汽车等的燃料。为此,美国于2002年还提出了“国家氢动力计划”。但是由于技术还不成熟,还没有进行大批的工业化应用。2003年科学家发现,使用氢燃料会使大气层中的氢增加约4~8倍。认为可能会让同温层的上端更冷、云层更多,还会加剧臭氧洞的扩大。但是一些因素也可抵销这种影响,如使用氯氟甲烷的减少、土壤的吸收、以及燃料电池的新技术的开发等。 在常温下,氢比较不活泼,但可用合适的催化剂使之活化。在高温下,氢是高度活泼的。除稀有气体元素外,几乎所有的元素都能与氢生成化合物。非金属元素的氢化物通常称为某化氢,如卤化氢、硫化氢等;金属元素的氢化物称为金属氢化物,如氢化锂、氢化钙等。 氢是重要的工业原料,又是未来的能源,也是最清洁的燃料。 氢的同位素氘和氚可应用于核聚变,提供能量,因为技术原因,核聚变发电还无法大量应用。 氢气的工业用途不同的氢气生产方法有不同的固定投资额和边际成本。制氢的能源和燃料可以来自多种来源例如天然气、核能、太阳能、风力、生物燃料、煤矿、其他化石燃油、地热。(以下以全美国汽车都改为氢气的假设为计算单位) 天然气用气电共生改良后需要15.9百万立方米的瓦斯,如果每天生产500公斤由改装的加油站就地生产(例如高科技加气站),相当于改装777,000座加油站成本$1兆美金;可产每年1亿5000万吨氢气。先假设不需额外氢气分配系统的投资成本下;等于每GGE单位$3.00美元(Gallons of Gasoline Equivalent 相当一加仑汽油的能量简称GGE,方便和目前油价作比较) 核能用以提供电解水的氢气电能来源。需要240,000吨铀矿—提供2,000座600兆瓦发电厂 等于$8400亿美金,等于每GGE单位$2.50美元。 太阳能用以提供电解水的氢气电能来源。需要每平方公尺达2,500千瓦(每小时)效率的太阳能版科技共1亿1300万座40千瓦的机组,成本推估约$22兆 等于每GGE单位$9.50美元。 风力用以提供电解水的氢气电能来源。 每秒7公尺的平均风速计算,需要1百万座2百万瓦风力机组成本约$3兆美金等于每GGE单位$3.00美元。 生物燃油气化厂用气电共生改良后.。需要15亿吨干燥生物材料,3,300座厂房需要113.4百万英亩(460,000 平方千米)农场提供生物材料。约$5650亿美元 等于每GGE单位$1.90美元(假设土地不匮乏且地价最便宜状态) 煤矿火力发电用气电共生改良后提供电解水的氢气电能来源。需要10亿吨煤将近1,000座275兆瓦发电厂成本$5000亿美金,等于每GGE单位1美元。 以上看出由煤矿的制氢最便宜,但是除非二氧化碳封存技术普及化及实用化,否则产生的高污染会使氢气科技的环保性荡然无存。 |