词条 | 潘平奇 |
释义 | 潘平奇,男,原籍广东梅县, 甘肃平凉出生,现为数学系教授,博士生导师。除了发表不少论文以外还提出可展曲面展开的一般数学方法。 成就荣誉兼任中国运筹学会常务理事,中国决策科学学会理事,中国数学规划学会理事, ZFM (德)评论员。兰州大学1967年兰州大学数学力学系本科毕业;1981年南京大学数学系研究生毕业(获理学硕士学位, 研究方向:最优化理论与应用),一九八六年至一九八八年先后在美国华盛顿和康乃尔大学进修最优化。2001年获“第五届江苏省优秀科技工作者”称号。入选《世界名人录》(Who’s Who in the World)(美),《21世纪2000位杰出知识分子》(2000 Outstanding Intellectuals of the 21st Century )(英)和2003年出版的《1000位伟大知识分子》(1000 Great Intellectuals)(英)。潘教授长期从事运筹学和最优化领域的教学和科研工作,在国内外核心学术刊物上发表论文七十篇以上及评论近百篇 贡献潘教授的早期研究兴趣涉及数值逼近,扩大了解析几何的传统内容,对船舶和飞机制造自动化有重要价值;他提出的点列光顺及拟合新方法应用于船体数学放样取得了好效果,用相应软件可使原来十几个人需一个多月才能完成的工作缩短到几小时。潘教授于上世纪七十年代后期转向优化领域,证明了非线性优化拟牛顿方法的一阶性,并建立了二阶拟牛顿方法。他是国内最早涉足ODE方法的少数学者之一,求解等式约束最优化问题的ODE方法和理论的论文被第十二届国际数学规划会议列为邀请报告,在国内外有较大影响。在线性规划领域,潘教授首次提出最优基的启发式特征刻划,并推广了BLAND有限主元规则;数值试验表明新规则表现好于BLAND规则和其他有限规则。他提出二分单纯形算法及若干基于最钝角规则的非单调性算法,表现不仅好于现有的非单调性算法如CRISS-CROSS 算法,且好于传统单纯形算法。近年来,潘教授引入亏基概念,将单纯形算法推广到退化情形,为困扰学术界达半个世纪之久的退化问题的解决找到了新途径;他在此基础上建立的投影主元算法兼有投影算法和主元算法的特征,第一次打破了这两类算法的界限。其中“线性规划的修正对偶投影主元算法”,在数值试验中超过了Stanford 大学的著名优化软件MINOS 5.51. 他的有关报告在第十六届国际数学规划会议及其后曾得到单纯形算法之父G. B. Dantzig的高度评价(1997.8.洛桑)。 主要论著[1] Practical finite pivoting rules for the simplex method, OR Spektrum, Vol. 12(1990), 219-225. [2] Simplex-like method with bisection for linear programming, Optimization, Vol. 22(1991), No.5, 717-743. [3] On safeguarding for global convergence of descent methods with inexact line searches, Proceedings of the Second Conference of Asian-Pacific Operations Research Societies (APORS) within IFORS (Beijing, China, August 27-30, 1991), Peking University Press, 1992, Beijing, 521-529. [4] New ODE methods for equality constrained optimization (1): equations, Journal of Computational Mathematics, Vol. 10 (1992), No.1, 77-92. [5] New ODE methods for equality constrained optimization (2): algorithms, Journal of Computational Mathematics, Vol. 10(1992), No.2, 129-146. [6] Modification of Bland's pivoting rule, Numerical Mathemetics, Vol. 14(1992), No. 4, 379-381. [7] A characterization of Developable surfaces and its application (coauthor: Ding-Qiuan Song), Journal of Southeast University , Vol. 23 , Suppl.(1993), 99-105. [8] A variant of the dual pivoting rule in linear programming, Journal of Information and Optimization Sciences, Vol. 15(1994), No.3, 405-413. [9] Ratio-test-free pivoting rules for a dual phase-I method, Proceedings of The Third Conference of Chinese SIAM, Tsinghua University Press, 1994, Beijing, China, 245-249. [10] Composite phase-1 approach without measuring infeasibility, Proceedings of Second National Symposium on Mathematical Programming, Xidian University Press, 1994, Xian, China, 359-364. [11] Ratio-test-free pivoting rules for the bisection simplex method ,Proceedings of National Conference on Decision Making Science, 1994, Shangrao, China, 24-29. [12] Moore-Penrose inverse simplex algorithms based on successive linear subprogramming approach (Coauthor: Zi-Xiang Ouyang), Numerical Mathemetics, Vol. 3(1994), No.2, 180-190. |
随便看 |
百科全书收录4421916条中文百科知识,基本涵盖了大多数领域的百科知识,是一部内容开放、自由的电子版百科全书。