请输入您要查询的百科知识:

 

词条 欧几里得距离
释义

欧几里得距离定义: 欧几里得距离( Euclidean distance)也称欧式距离,它是一个通常采用的距离定义,它是在m维空间中两个点之间的真实距离。

在二维和三维空间中的欧式距离的就是两点之间的距离,二维的公式是

d = sqrt((x1-x2)^+(y1-y2)^)

三维的公式是

d=sqrt((x1-x2)^+(y1-y2)^+(z1-z2)^)

推广到n维空间,欧式距离的公式是

d=sqrt( ∑(xi1-xi2)^ ) 这里i=1,2..n

xi1表示第一个点的第i维坐标,xi2表示第二个点的第i维坐标

n维欧氏空间是一个点集,它的每个点可以表示为(x(1),x(2),...x(n)),其中x(i)(i=1,2...n)是实数,称为x的第i个坐标,两个点x和y=(y(1),y(2)...y(n))之间的距离d(x,y)定义为上面的公式.

欧氏距离看作信号的相似程度。 距离越近就越相似,就越容易相互干扰,误码率就越高。

所谓欧氏距离变换,是指对于一张二值图像(再次我们假定白色为前景色,黑色为背景色),将前景中的像素的值转化为该点到达最近的背景点的距离。

欧氏距离变换在数字图像处理中的应用范围很广泛,尤其对于图像的骨架提取,是一个很好的参照。

========

欧氏距离:(∑(Xi-Yi)2)1/2,即两项间的差是每个变量值差的平方和再平方根,目的是计算其间的整体距离即不相似性。

我们熟悉的 欧氏距离虽然很有用,但也有明显的缺点。它将样品的不同属性(即各指标或各变量)之间的差别等同看待,这一点有时不能满足实际要求。例如,在教育研究中, 经常遇到对人的分析和判别,个体的不同属性对于区分个体有着不同的重要性。因此,有时需要采用不同的距离函数。

随便看

 

百科全书收录4421916条中文百科知识,基本涵盖了大多数领域的百科知识,是一部内容开放、自由的电子版百科全书。

 

Copyright © 2004-2023 Cnenc.net All Rights Reserved
更新时间:2025/1/27 20:42:03