词条 | 马兰·梅森 |
释义 | 马兰·梅森(Marin Mersenne,1588年9月8日-1648年9月1日),法国神学家、数学家、音乐理论家。 梅森简介梅森1588年出生在法国奥译的一个工人家庭,16岁进入耶稣会办的学校学习,1609年从索邦神学院毕业后任神职人员,并成为法国天主教米尼玛派教士。1619年他到巴黎的拉农西亚德女修道院教授神学和哲学。 虽然梅森是一位神职人员,但他却是科学的热心拥护者和守望者,在教会中为了保卫科学事业做了很多有益的工作。梅森有很高的科学素养,其研究涉及声学、光学、力学、航海学和数学等多个学科,并有“声学之父”的美称;而他对科学所作的主要贡献还是他起了一个极不平常的学术思想通道作用。 1626年,梅森把自己在巴黎的修道室办成了科学家聚会场所和交流信息中心,称为“梅森学院”。他与同时代的最伟大的数学家保持经常的通信联系,和业余数学王子费马是好朋友。梅森编辑过多位希腊数学家的著作,并对其中的的课题用出论述,尤其是以梅森素数闻名,并于1644年发表的《物理数学随感》(Cogitata physico—mathe-matica)中讨论它。其著作《宇宙和谐》(Harmonie universelle)一书,是记录当代乐器的一份珍贵的史料。1648年9月1日,梅森于巴黎逝世。 梅森素数梅森的学术成就以素数研究最为著名。1640年6月,费马在给梅森的一封信中写道:“在艰深的数论研究中,我发现了三个非常重要的性质。我相信它们将成为今后解决素数问题的基础”。这封信讨论了形如2^P-1的数(其中p为素数)。早在公元前300多年,古希腊数学家欧几里得就开创了研究2^P-1的先河,他在名著《几何原本》第九章中论述完美数时指出:如果2^P-1是素数,则(2^p-1)2^(p-1)是完美数。 梅森在欧几里得、费马等人的有关研究的基础上对2^P-1作了大量的计算、验证工作,并于1644年在他的《物理数学随感》一书中断言:对于p=2,3,5,7,13,17,19,31,67,127,257时,2P-1是素数;而对于其他所有小于257的数时,2^P-1是合数。前面的7个数(即2,3,5,7,13,17和19)属于被证实的部分,是他整理前人的工作得到的;而后面的4个数(即31,67,127和257)属于被猜测的部分。不过,人们对其断言仍深信不疑,连大数学家莱布尼兹和哥德巴赫都认为它是对的。 虽然梅森的断言中包含着若干错误(后文详述),但他的工作极大地激发了人们研究2^P-1型素数的热情,使其摆脱作为“完美数”的附庸的地位。可以说,梅森的工作是素数研究的一个转折点和里程碑。由于梅森学识渊博,才华横溢,为人热情以及最早系统而深入地研究2^P-1型的数,为了纪念他,数学界就把这种数称为“梅森数”;并以Mp记之(其中M为梅森姓名的首字母),即Mp=2^P-1。如果梅森数为素数,则称之为“梅森素数”(即2^P-1型素数)。 梅森素数貌似简单,而研究难度却很大。它不仅需要高深的理论和纯熟的技巧,而且需要进行艰巨的计算。即使属于“猜测”部分中最小的M^31=2^31-1=2147483647,也具有10位数。可以想象,它的证明是十分艰巨的。正如梅森推测:“一个人,使用一般的验证方法,要检验一个15位或20位的数字是否为素数,即使终生的时间也是不够的。” 是啊,枯燥、冗长、单调、刻板的运算会耗尽一个人的毕生精力,谁愿让生命的风帆永远在黑暗中颠簸!人们多么想知道梅森猜测的根据和方法啊,然而年迈力衰的他来不及留下记载,四年之后就去世了;人们的希望与梅森的生命一起泯灭在流逝的时光之中。看来,伟人的“猜测”只有等待后来的伟人来解决了。 由于梅森素数有许多独特的性质和无穷的魅力,千百年来一直吸引着众多的数学家,如欧几里得、费马、笛卡尔、莱布尼兹、哥德巴赫、欧拉、高斯、哈代、图灵等和无数的业余数学爱好者对它进行研究和探寻。2300多年来,人类仅发现47个梅森素数。由于这种素数珍奇而迷人,因此被人们誉为“数海明珠”。 自梅森提出其断言后,人们发现的已知最大素数几乎都是梅森素数;因此,寻找新的梅森素数的历程也就几乎等同于寻找新的最大素数的历程。而梅森断言为素数而未被证实的几个Mp当然首先成为人们研究的对象。 梅森素数的研究难度极大,它不仅需要高深的理论和纯熟的技巧,而且需要进行艰苦的计算。1772年,瑞士数学家欧拉在双目失明的情况下,靠心算证明了M31是一个素数,它共有10位数,堪称当时世界上已知的最大素数。欧拉的毅力与技巧都令人赞叹不已,他因此获得了“数学英雄”的美誉。这是寻找已知最大素数的先声。欧拉还证明了欧几里得关于完美数的定理的逆定理,即:每个偶完美数都具有形式(2^p-1)2^(p-1),其中2^p-1是素数。这就使得偶完美数完全成了梅森素数的“副产品”了。欧拉的艰辛给人们提示:在伟人难以突破的困惑面前要想确定更大的梅森素数,只有另辟蹊径了。 100年后,法国数学家鲁卡斯提出了一个用来判别Mp是否是素数的重要定理——鲁卡斯定理。鲁卡斯的工作为梅森素数的研究提供了有力的工具。1883年,数学家波佛辛利用鲁卡斯定理证明了M61也是素数——这是梅森漏掉的。梅森还漏掉另外两个素数:M89和M107,它们分别在1911年与1914年被数学家鲍尔斯发现。 1903年,在美国数学学会的大会上,数学家柯尔作了一个一言不发的报告,他在黑板上先算出2^67-1,接着又算出193707721×761838257287,两个结果相同。这时全场观众站了起来为他热烈鼓掌,这在美国数学学会开会的历史上是绝无仅有的一次。他第一个否定了“M67为素数”这一自梅森断言以来一直被人们相信的结论。这短短几分钟的报告却花了柯尔3年的全部星期天。1922年,数学家克莱契克进一步验证了M257并不是素数,而是合数(但他没有给出这一合数的因子,直到20世纪80年代人们才知道它有3个素因子)。 1930年,美国数学家雷默改进了鲁卡斯的工作,给出了一个针对Mp的新的素性测试方法,即鲁卡斯-雷默方法:Mp>3是素数的充分必要条件是Lp-2=0,其中L0=4,Ln+1=(Ln-2)ModMp。这一方法直到今天的“计算机时代”仍发挥重要作用。 “手算笔录时代”,人们历尽艰辛,仅找到12个梅森素数。而计算机的产生使寻找梅森素数的研究者如虎添翼。1952年,数学家鲁滨逊等人将鲁卡斯-雷默方法编译成计算机程序,使用SWAC型计算机在几个月内,就找到了5个梅森素数:M521、M607、M1279、M2203和M2281。其后,M3217在1957年被数学家黎塞尔证明是素数;M4253和M4423在1961年被数学家赫维兹证明是素数。1963年,美国数学家吉里斯证明M9689和M9941是素数。 1963年9月6日晚上8点,当第23个梅森素数M11213通过大型计算机被找到时,美国广播公司(ABC)中断了正常的节目播放,以第一时间发布了这一重要消息;发现这一素数的美国伊利诺伊大学数学系全体师生感到无比骄傲,以致于把所有从系里发出的信件都敲上了“2^11213-1是个素数”的邮戳。 1971年3月4日晚,美国哥伦比亚广播公司(CBS)中断了正常节目播放,发布了塔可曼使用IBM360-91型计算机找到新的梅森素数M19937的消息。而到1978年10月,世界几乎所有的大新闻机构(包括我国的新华社)都报道了以下消息:两名年仅18岁的美国高中生诺尔和尼科尔使用CYBER174型计算机找到了第25个梅森素数:M21701。 随着素数P值的增大,每一个梅森素数的产生都艰辛无比;而各国科学家及业余研究者们仍乐此不疲,激烈竞争。1979年2月23日,当美国克雷研究公司的计算机专家史洛温斯基和纳尔逊宣布他们找到第26个梅森素数M23209时,人们告诉他们:在两个星期前诺尔已得到这一结果。为此,史洛温斯基潜心发愤,花了一个半月的时间,使用CRAY-1型计算机找到了新的梅森素数M44497。这个记录成了当时不少美国报纸的头版新闻。之后,这位计算机专家乘胜前进,使用经过改进的CRAY-XMP型计算机在1983年至1985年间找到了3个梅森素数:M86243、M132049和M216091。但他未能确定M86243和M216091之间是否有异于M132049的梅森素数。而到了1988年,科尔魁特和韦尔什使用NEC-FX2型超高速并行计算机果然捕捉到了一条“漏网之鱼”——M110503。沉寂4年之后,1992年3月25日,英国原子能技术权威机构——哈威尔实验室的一个研究小组宣布他们找到了新的梅森素数M756839。1994年1月14日,史洛温斯基和盖奇为其公司再次夺回发现“已知最大素数”的桂冠——这一素数是M859433。而下一个梅森素数M1257787仍是他们的成果。这一素数是使用CRAY-794超级计算机在1996年取得的。史洛温斯基由于发现7个梅森素数,而被人们誉为“素数大王”。但使用超级计算机寻找梅森素数的游戏实在太昂贵了。 网格(Grid)这一崭新技术的出现使梅森素数的探寻如虎添翼。1996年初,美国数学家和程序设计师乔治· 沃特曼编制了一个梅森素数计算程序,并把它放在网页上供数学家和数学爱好者免费使用,这就是著名的“因特网梅森素数大搜索”(GIMPS)项目。该项目采取网格计算方式,利用大量普通计算机的闲置时间来获得相当于超级计算机的运算能力。1997年美国数学家及程序设计师斯科特·库尔沃斯基和其他人建立了”素数网”(PrimeNet),使分配搜索区间和向GIMPS发送报告自动化。现在只要人们去GIMPS的主页下载那个免费程序,就可以立即参加该项目来搜寻新的梅森素数。 为了激励人们寻找梅森素数和促进网格技术发展,设在美国的电子新领域基金会(EFF)于1999年3月向全世界宣布了为通过GIMPS项目来寻找新的更大的梅森素数而设立的奖金。它规定向第一个找到超过1000万位数的个人或机构颁发10万美元。后面的奖金依次为:超过1亿位数,15万美元;超过10亿位数,25万美元。其实,绝大多数研究者参与该项目并不是为了金钱,而是出于乐趣、荣誉感和探索精神。 2008年8月23日,美国加州大学洛杉矶分校计算机专家埃德森·史密斯发现了第45个梅森素数“2的43112609次方减1”,该素数有12978189位,它是目前已知的最大素数。如果用普通字号将这个巨数连续写下来,其长度可超过50公里!史密斯是第一个发现超过1000万位的梅森素数的人,他获得了EFF颁发的10万美元大奖。年底这一重大发现被著名的美国《时代》周刊评为“2008年度50项最佳发明”之一。 14年来,人们通过GIMPS项目找到了13个梅森素数,其发现者来自美国、英国、法国、德国、加拿大和挪威。目前世界上已有170多个国家和地区近18万人参加了这一项目,并动用了37万多台计算机联网来进行网格计算,以寻找新的梅森素数。该项目的计算能力已超过当今世界上任何一台最先进的超级矢量计算机的计算能力,运算速度超过每秒400万亿次。 时至今日止,人们已经发现了47个梅森素数,并且确定M20996011位于梅森素数序列中的第40位。现把它们列表如下: 序号 梅森素数 位数 发现时间 1 M2 1 公元前300 2 M3 1 公元前300 3 M5 2 公元前100 4 M7 3 公元前100 5 M13 4 15世纪中叶 6 M17 6 1603 7 M19 6 1603 8 M31 10 1772 9 M61 19 1883 10 M89 27 1911 11 M107 33 1914 12 M127 39 1876 13 M521 157 1952 14 M607 183 1952 15 M1279 386 1952 16 M2203 664 1952 17 M2281 687 1952 18 M3217 969 1957 19 M4253 1281 1961 20 M4423 1332 1961 21 M9689 2917 1963 22 M9941 2993 1963 23 M11213 3376 1963 24 M19937 6002 1971 25 M21701 6533 1978 26 M23209 6987 1979 27 M44497 13395 1979 28 M86243 25962 1983 29 M110503 33265 1988 30 M132049 39751 1983 31 M216091 65050 1985 32M756839 227832 1992 33 M859433 258716 1995 34 M1257787 378632 1996 35M1398269 420921 1996 36 M2976221 895933 1997 37 M3021377 909526 1998 38 M6972593 2098960 1999 39 M13466917 4053946 2001 40 M20996011 6320430 2003 41?M24036583 7235733 2004 42?M25964951 7816230 2005 43? M30402457 9152052 2006 44? M32582657 9808358 2007 45? M43112609 12978189 2008 46? M37156667 11185272 2008 47? M42643801 12837064 2009 由上可见,梅森素数的分布极不规则。我们甚至可以看到,连找到梅森素数的时间分布都极不规则,有时许多年未能找到一个,而有时则一下找到好几个。探索梅森素数的分布规律似乎比寻找新的梅森素数更为困难。数学家们在长期的摸索中,提出了一些猜想。英国数学家香克斯、美国数学家吉里斯、法国数学家托洛塔和德国数学家伯利哈特就曾分别给出过关于梅森素数分布的猜测,但他们的猜测有一个共同点,就是都以近似表达式给出;而它们与实际情况的接近程度均未尽如人意。中国数学家及语言学家周海中经过多年的研究,于1992年首次给出了梅森素数分布的精确表达式,为人们寻找这一素数提供了方便;后来这一重要成果被国际上命名为“周氏猜测”。著名的《科学》杂志上有一篇评论文章指出,这是梅森素数研究中的一项重大突破。 为了激励人们寻找梅森素数和促进网格技术发展,设在美国的电子新领域基金会(EFF)于1999年3月向全世界宣布了为通过GIMPS项目来寻找新的更大的梅森素数而设立的奖金。它规定向第一个找到超过1000万位数的个人或机构颁发10万美元。后面的奖金依次为:超过1亿位数,15万美元;超过10亿位数,25万美元。其实,绝大多数研究者参与该项目并不是为了金钱,而是出于乐趣、荣誉感和探索精神。梅森素数历来都是数论研究的一项重要内容,也是当今科学探索的热点和难点之一。自古希腊时代直至17世纪,人们寻找梅森素数的意义似乎只是为了寻找完美数。但自梅森提出其著名断言以来,特别是欧拉证明了欧几里得关于完美数的定理的逆定理以来,完美数已仅仅是梅森素数的一种“副产品”了。 寻找梅森素数在现代已有了十分丰富的意义。寻找梅森素数是发现已知最大素数的最有效的途径,自欧拉证明M31为当时最大的素数以来,在发现已知最大素数的世界性竞赛中,梅森素数几乎囊括了全部冠军。 寻找梅森素数是测试计算机运算速度及其他功能的有力手段。如M1257787就是1996年9月美国克雷公司在测试其最新超级计算机的运算速度时得到的。梅森素数在推动计算机功能改进方面发挥了独特作用。发现梅森素数不仅仅需要高功能的计算机,它还需要素数判别和数值计算的理论与方法以及高超巧妙的程序设计技术等等,因而它还推动了数学皇后——数论的发展,促进了计算数学、程序设计技术的发展。 由于寻找梅森素数需要多种学科的支持,也由于发现新的“最大素数”所引起的国际影响使得对于梅森素数的研究能力已在某种意义上标志着一个国家的科学技术水平,而不仅仅是代表数学的研究水平。从各国各种传媒(而不仅仅是学术刊物)争相报道新的梅森素数的发现,我们也可清楚地看到这一点。 梅森素数在实用领域也有用武之地。现在人们已将大素数用于现代密码设计领域。其原理是:将一个很大的数分解成若干素数的乘积非常困难,但将几个素数相乘却相对容易得多。在这种密码设计中,需要使用较大的素数,素数越大,密码被破译的可能性就越小。 寻找梅森素数最新的意义是:它促进了分布式计算技术的发展。从最新的13个梅森素数是在因特网项目中发现这一事实,我们已可以想象到网络的威力。分布式计算技术使得用大量个人计算机去做本来要用超级计算机才能完成的项目成为可能;这是一个前景非常广阔的领域。它的探究还推动了快速傅立叶变换的应用。 在当代梅森素数的探究需要多种学科和技术的支持,所以许多科学家认为:它的研究成果,一定程度上反映了一国的科技水平。英国顶尖科学家、牛津大学教授马科斯·索托伊甚至认为它是人类智力发展在数学上的一种标志,也是科学发展的里程碑之一。 可以相信,梅森素数这颗数学海洋中的璀璨明珠正以其独特的魅力,吸引着更多的有志者去寻找和研究。 最后,有必要指出的是:素数有无穷多个,这一点早为欧几里得发现并证得。然而,梅森素数是否有无穷多个?这是目前尚未解决的著名数学难题;而揭开这一未解之谜,正是科学追求的目标。让我们以数学大师希尔伯特的名言来结束本文:“我们必须知道,我们必将知道。” 十二平均律在西方,最早提出十二平均律的就是马兰梅森,提出于1636年。 十二平均律就是将一个八度均分成12个均等的音程,每一个音程规定为半音,两个半音为一个全音。 十二平均律最大的优点是不管怎样移调或转调,都能够获得均等的音乐效果。但这是相对的,因为十二平均律是将一个八度均分成12等分,所以每一个半音之间的震动比数都是一个除不尽的无限小数,所以无论演奏哪一个和弦都不可能得到真正完全谐和的音乐效果,只不过十二平均律影响的幅度相当小,比较之下仍是非常好的一个音程系统。 MIDI再怎么进步都无法取代真人演奏效果的原因是因为真人演奏时演奏家会凭自己的耳朵判断音程和谐的程度,通常比较接近纯律,但在电脑中无法做到,根本原因是音程定义系统上有着根本的差异,不过差异不太大。 |
随便看 |
百科全书收录4421916条中文百科知识,基本涵盖了大多数领域的百科知识,是一部内容开放、自由的电子版百科全书。