词条 | sli |
释义 | SLI的全称是Scalable Link Interface(可升级连接接口),它是通过一种特殊的接口连接方式,在一块支持双PCI Express X 16的主板上,同时使用两块同型号的PCIE显卡。 以增强nVIDIA在工作站产品中的竞争力,毕竟ATi凭借FireGL系列在该领域不断蚕食nVIDIA的市场。在未来的产品线中,SLI将成为新的至高点。 由来多显卡并行机制的历史最早可以追溯到1997年,当时的显卡市场可以说是3Dfx一家独大,该公司在1996年下半年所推出的Voodoo加速卡成为发烧友疯狂追捧的一代经典产品。1998年初,3Dfx推出了它们的第二代3D图形卡产品—Voodoo 2,当时Voodoo 2拥有90Mps的像素填充率,具备Z-Buffering、Anti-Aliasing、单周期双纹理等当时最先进的3D特性,大幅超越其上一代产品,其他对手更是被远远甩在了后头。不过,最令发烧友疯狂的是Voodoo 2所具有的“SLI交错互连技术”,这项技术可以让两块Voodoo 2显卡连接起来并行运作,获得近乎翻倍的3D效能。如此一来,其他竞争者更是望尘莫及。 Sli的运行我们知道,CPU的并行运作是通过指令并行执行获得的,但对显卡来说情况有所区别。显卡最终生成的是所渲染的3D画面,这项工作包含大量的指令,而如何将工作均等分配就成为问题,3Dfx选择了按画面帧线进行渲染的方式。SLI技术将一幅渲染的画面分为一条条扫描帧线(Scanline),若Voodoo 2采用双显卡运行模式,那么就由一个显卡负责渲染画面的奇数帧线部分,另一块显卡渲染偶数帧线,然后将同时渲染完毕的帧线进行合并后写入到帧缓冲中,接下来显示器就可以显示出一个完整的渲染画面。不难看出,SLI技术让渲染工作被平均分担,每块显卡只需要完成1/2的工作量。理论上说,渲染效率自然也可以提高1倍,这就是双显卡并行大幅提升效能的奥秘所在。SLI在技术上极为成功,而发烧友们对Voodoo 2也抱有莫大的热情。在当时,你如果希望在1024×768的“高分辨率”下流畅地玩3D游戏,唯一的解决方案就是使用两块Voodoo 2显卡并让它们工作在SLI模式下。 原理在Voodoo 2之后的Voodoo 3,3Dfx没有效仿这个SLI双显卡技术,但在Voodoo 4/5/6时代,3Dfx重新恢复了SLI,但应用的形式已有所区别。Voodoo 2倡导双显卡并行运作,两块显卡插在PCI槽里再用专用的线缆连接起来,但这并非必需的,单个Voodoo 2显卡也可以独自工作,只是速度较慢而已。2000年春,3Dfx推出VSA100图形芯片,当时nVIDIA已经压过3Dfx成为领先者,为了夺回自己的领导地位,3Dfx让SLI技术重装上阵。VSA100可支持单芯片、双芯片和四芯片并行运作,单芯片版本就是Voodoo 4,双芯片显卡为Voodoo 5 5500,而四芯片显卡则是著名的Voodoo 5 6000。此时,SLI技术演变为单显卡多图形芯片的形式,不需占用两个插槽,但内部的工作机制并没有发生多大的变化,依然是通过划分渲染帧的方式各自执行,然后在帧缓冲中统一合成。出于众所周知的原因,这些显卡都没获得广泛认可,3Dfx也从衰落走向死亡。2001年初,nVIDIA收购了3Dfx,SLI技术也随之成为了历史,尽管nVIDIA掌握了3Dfx的所有技术,但它并没有将之发扬光大,而是继续按照自己的道路走下去,收购3Dfx的目的也许只是消灭一个竞争对手而已。 在这之后,我们看到了nVIDIA顺利一统江湖,接着就是ATi逐渐发起挑战,GeForce和Radeon是人们最常挂在嘴边的名词,至于3Dfx和它的SLI已经逐渐被人淡忘了,即便偶尔有人谈起,也多是说那是一个策略糟糕的企业和一项昂贵不切实际的技术。在显卡的历史中,除了Voodoo 2之外没有哪一项多显卡、多芯片技术曾获得成功,虽然ATi尝试过,新生的XGI也勇闯该领域,然而事实证明这个方案并不受用户们的欢迎。不过,谁也没有想到nVIDIA重新拾起3Dfx的SLI技术。2004年6月29日,nVIDIA大张旗鼓发布了“SLI Multi-GPU技术”,并将该技术引入最新发布的GeForce 6800和Quadro FX4000系列显卡上。沿用“SLI”这个名称或多或少让人联想到3Dfx,nVIDIA想要的也许正是这个效果,它更希望被用户认为是3Dfx技术的一脉相承。但如果我们深入分析,便会发现它与3Dfx的SLI技术没有多少相同的地方,基本上就是一套nVIDIA新搞出来的多显卡方案。 nVIDIA的SLI技术与早先3dfx的SLI虽然缩写相同,其实已经是全新的技术,不但工作原理不同,甚至名称都不相同,3dfx的SLI(Scan Line Interleave,双扫描线交错技术)是将画面分为一条条扫描帧线(Scanline),两块显卡对奇数帧线和偶数帧线分别渲染,然后将同时渲染完毕的帧线进行合并后写入到帧缓冲中,接下来显示器就可以显示出一幅完整的画面。而nVIDIA的SLI则有两种渲染模式:分割帧渲染模式(Scissor Frame Rendering,SFR)和交替帧渲染模式(Alternate Frame Rendering,AFR),分割帧渲染模式是将每帧画面划分为上下两个部分,主显卡完成上部分画面渲染,副显卡则完成下半部分的画面渲染,然后副显卡将渲染完毕的画面传输给主显卡,主显卡再将它与自己渲染的上半部分画面合成为一幅完整的画面;而交替帧渲染模式则是一块显卡负责渲染奇数帧画面,而另外一块显卡则负责渲染偶数帧画面,二者交替渲染,在这种模式下,两块显卡实际上都是渲染的完整的画面,此时并不需要连接显示器的主显卡做画面合成工作。 在SLI状态下,特别是在分割帧渲染模式下,两块显卡并不是对等的,在运行工作中,一块显卡做为主卡(Master),另一块做为副卡(Slave),其中主卡负责任务指派、渲染、后期合成、输出等运算和控制工作,而副卡只是接收来自主卡的任务进行相关处理,然后将结果传回主卡进行合成然后输出到显示器。由于主显卡除了要完成自己的渲染任务之外,还要额外担负副显卡所传回信号的合成工作,所以其工作量要比副显卡大得多。另外,在SLI模式下,就只能连接一台显示器,并不能支持多头显示。 发展SLI技术也在不断的发展,最初对平台硬件有许多限制,例如必须使用完全一样的显卡(同一个厂家同一个型号的显卡,甚至显卡BIOS也必须相同),而且在两块显卡之间还必须使用SLI桥接器,支持SLI的也只有Geforce 6800 Ultra/6800 GT和6600GT三款显示芯片等等。现在组建SLI则可以使用不同厂家的采用相同显示芯片的显卡,低速显卡可以不必使用SLI桥接器(不过性能要比使用SLI桥接器时有所降低),支持SLI的显示芯片也扩大到了除开Geforce 6200/6200TC之外的所有Geforce 6系列以及所有Geforce 7系列等等,不过,由于各个主板的两个PCI-E插槽的间距不是固定的,因此不同主板的SLI桥接器一般是不能替换的。 实际性能SLI技术理论上能把图形处理能力提高一倍,在实际应用中,除了极少数测试之外,在实际游戏中图形性能只能提高30%-70%不等,在某些情况下甚至根本没有性能提高,而且目前能良好支持SLI的游戏还不太多。当然,随着驱动程序的完善,目前存在的这些问题应该能得到逐步解决。 主板芯片组根据其对两块显卡实际提供的PCI Express Lanes,支持SLI的方式也不尽相同,有采用PCI Express X16加PCI Express X4的,也有采用双PCI Express X8的,nVIDIA自己的nForce Pro 2200+nForce Pro 2050以及nForce4 SLI X16和nForce4 SLI X16 IE则实现了真正的双PCI Express X16的SLI。 Hybrid SLI在最新的MCP78中提供了hybrid SLI功能,即为独立显卡和集成显卡的SLI。有两种SLI方式。电源模式和性能模式 电源模式:当整合主板和高档NVIDIA显卡组成SLI时,在2D模式下使用集成显卡,在3D模式下使用独立显卡。这样可以起到省电的效果。 性能模式:当整合主板和低档NVIDIA显卡如Geforce8400或者Geforce8450组成SLI时,可以是两张显卡同时参与渲染而大幅提升图形性能。 国际货运用语SLI是shippers letter of instruction的简写形式,意指国际货物托运委托书。 |
随便看 |
百科全书收录4421916条中文百科知识,基本涵盖了大多数领域的百科知识,是一部内容开放、自由的电子版百科全书。