请输入您要查询的百科知识:

 

词条 Raychaudhuri方程
释义

由于我们对奇点的定义是建立在测地不完备性之上的, 因此为了研究奇点产生的条件, 很自然的做法就是对测地线的性质进行研究。 我们用 V 表示测地线的切矢量, 对于类时测地线来说, V 满足两个条件: VaVa=1 (归一化条件) 及 VaVb;a=0 (自平移条件)。 我们效仿线性代数中引进投影算符的做法, 引进一个辅助张量 hab=gab-VaVb。 不难证明 (请自行验证), hab 是在与 V 垂直的子空间上的投影算符, 因此 hab 有时被称为时空度规 gab 的 “空间” 。

我们知道, 时空曲率的存在会导致沿相邻测地线运动的试验粒子之间的距离发生变化, 这是所谓的测地偏离 (geodesic deviation) 效应, 它是引力相互作用的一种体现。 我们对测地线性质的研究也从这个角度入手。 对一个测地线束来说, 如果我们用与切矢量 V 垂直的自然基矢 S 表示测地偏离矢量, 则 [S, V]=0, 即 : dSa/dτ ≡ VbSa;b = Va;bSb (其中 τ 为固有时间)。 这表明, Va;b 描述了测地偏离矢量沿测地线的变化。 如果我们把沿测地线束运动的一群粒子看成一种类似于连续介质的东西, 那么 Va;b 描述的就是这一介质的形变。 由于这种形变是纯 “空间” 的 ,因此我们可以仿照连续介质力学的做法, 用前面定义的时空度规的 “空间部分” hab 将这种形变分解为 :

Va;b = (1/3)θhab + σab + ωab

其中 θ, σab, 及 ωab 分别定义为:

θ = Va;bhab = Va;a

σab = V(a;b) - (1/3)θhab

ωab = V[a;b]

这里 V(a;b) 与 V[a;b] 分别为 Va;b 的对称与反对称部分。 上面这三项均有明确的物理意义: θ 被称为膨胀标量 (expansion scalar), 是 Va;b 的迹, 描述的是测地线束汇聚或发散的趋势; σab 被称为切变张量 (shear tensor), 是 Va;b 的无迹对称部分, 描述的是测地线束的空间截面在体积不变 (由无迹条件所保证) 的情况下产生形变的趋势; ωab 被称为涡旋张量 (vorticity tensor), 是 Va;b 的反对称部分, 描述的是测地线束在空间截面形状不变的情况下相互缠绕的趋势[注一]。 这其中描述测地线束汇聚或发散的 θ 对于奇点定理的讨论有着特别重要的意义, 因此我们将着重对它进行研究。

为了研究 θ, 我们注意到从物理上讲, 影响 θ 的因素是时空曲率 (或者说物质分布 - 两者通过 Einstein 场方程彼此联系)。 因此我们从曲率张量的定义式 Va;bc - Va;cb = RadbcVd 出发[注二]。 将这一表达式对指标 a 和 b 进行缩并, 与 Vc 取内积, 并利用 Va;b 的分解式及类时切向量 V 的性质, 便可证明 θ 沿测地线的变化为:

dθ/dτ ≡ Vaθ;a = -RabVaVb - (1/3)θ2 - σabσab + ωabωab

其中 τ 为固有时间。 这个方程被称为 Raychaudhuri 方程[注三], 是印度物理学家 A. K. Raychaudhuri (1923-2005) 与俄国物理学家 L. Landau (1908-1968) 彼此独立地提出的。 Raychaudhuri 方程的提出恰好是在 Einstein 逝世的那一年 (1955 年), 它与能量条件的结合将成为证明奇点定理的重要环节。

注释:

1、文献中对这一张量的叫法很多, 除涡旋外, 常见的叫法还有扭变 (twist) 与旋转 (rotation)。

2、确切地讲, 这是将曲率张量的定义用于测地切矢量场所得到的关系式。

3、是个物理量

随便看

 

百科全书收录4421916条中文百科知识,基本涵盖了大多数领域的百科知识,是一部内容开放、自由的电子版百科全书。

 

Copyright © 2004-2023 Cnenc.net All Rights Reserved
更新时间:2025/1/9 9:11:57