词条 | 铥 |
释义 | § 概述 铥为银白色金属,有延展性,质较软可用刀切开;熔点1545°C,沸点1947°C,密度9.3208。铥在空气中比较稳定;氧化铥为淡绿色晶体。铥的用途不多,主要是做金属卤素灯的添加剂。银白色金属,质软,熔点时具有高的蒸气压。溶于酸,能与水起缓慢化学作用。盐类(二价盐)氧化物都呈淡绿色。 § 性质 金属铥 元素名称:铥 元素原子量:168.9 原子体积:(立方厘米/摩尔):18.1 元素在太阳中的含量:(ppm):0.0002 元素在海水中的含量:(ppm):大西洋表面 0.00000013 晶体结构:晶胞为六方晶胞。 晶胞参数: a = 353.75 pm b = 353.75 pm c = 555.46 pm α = 90° β = 90° γ = 120° 地壳中含量:(ppm):0.48 维氏硬度:520MPa 氧化态:Main Tm+3 电离能 (kJ /mol) M - M+ 596.7 M+ - M2+ 1163 M2+ - M3+ 2285 M3+ - M4+ 4119 铥 相对原子质量:168.934 常见化合价:+3 电负性:1.25 外围电子排布:4f13 6s2 核外电子排布:2,8,18,31,8,2 同位素及放射线:Tm-168[93.1d] Tm-169 Tm-170[128.6d] Tm-171[1.92y] Tm-172[2.65d] 电子亲合和能:0 KJ•mol-1 第一电离能:596.4 KJ•mol-1 第二电离能:1163 KJ•mol-1 第三电离能:0 KJ•mol-1 单质密度: 9.321 g/cm3 单质熔点: 1545.0 ℃ 单质沸点: 1727.0 ℃ 原子半径: 2.42 埃 离子半径: 1.09(+3) 埃 共价半径: 1.56 埃 § 发现 发现人:克利夫(P.T.Cleve) 发现年代:1878年 发现过程:1878年,由克利夫(P.T.Cleve)发现的。 1842年莫桑德尔从钇土中分离出铒土和铽土后,不少化学家利用光谱分析鉴定,确定它们不是纯净的一种元素的氧化物,这就鼓励了化学家们继续去分离它们。在从氧化饵分离出氧化镱和氧化钪以后,1879年克利夫又分离出两个新元素的氧化物。其中一个被命名为thulium,以纪念克利夫的祖国所在地斯堪的纳维亚半岛(Thulia),元素符号曾为Tu,今用Tm。随着铥以及其他一些稀土元素的发现,完成了发现稀土元素第三阶段的另一半。 § 来源及用途 元素来源:由无水氟化铥TmF3用该还原制得;或用金属镧与铥氧化 铥激光外科微创手术 物的混合物中蒸气硫制得。与其他稀土元素共存于硅铍钇矿、黑稀金矿、磷钇矿和独居石中。独居石含稀土元素的质量分数一般达50%,其中铥占0.007%。 元素用途:在核反应中照射169Tm,生成170Tm,半衰期为129天,这个同位素克发射出很强的X射线。用它来制造轻便的,不需电源的手提式X射线机,也用作磷光体活化剂。在便携式X射线机上使用放射性铥作射线源,这样可以不必使用电气设备。 名称由来:得名于斯堪的纳维亚半岛的旧称“Thule”。 § 发现小史 铥是稀土金属中的一种。稀土是历史遗留的名称,从18世纪末叶开始被陆续发现。当时人们惯于把不溶于水的固体氧化物称作土,例如把氧化铝叫做陶土,氧化镁叫苦土。稀土是以氧化物状态分离出来,很稀少,因而得名稀土,稀土元素的原子序数是21(Sc)、39(Y)、57(La)至71(Lu)。它们的化学性质很相似,这是由于核外电子结构特点所决定的。它们一般均生成三价化合物。钪的化学性质与其它稀土差别明显,一般稀土矿物中不含钪。钷是从铀反应堆裂变产物中获得,放射性元素147Pm半衰期2.7年。过去认为钷在自然界中不存在,直到1965年,荷兰的一个磷酸盐工厂在处理磷灰石中,才发现了钷的痕量成分。 中国1968年将钷划入64种有色金属之外。 1787年瑞典人阿累尼斯(C.A.Arrhenius)在斯德哥尔摩(Stockholm)附近的伊特比(Ytterby)小镇上寻得了一块不寻常的黑色矿石,1794年芬兰化学家加多林(J.Gadolin)研究了这种矿石,从其中分离出一种新物质,三年后(1797年),瑞典人爱克伯格(A.G.Ekeberg)证实了这一发现,并以发现地名给新的物质命名为Ytteia(钇土)。后来为了纪念加多林,称这种矿石为Gadolinite(加多林矿,即硅铍钇矿)。 1803年德国化学家克拉普罗兹(M.H.Klaproth)和瑞典化学家柏齐力阿斯(J.J.Berzelius)及希生格尔(W.Hisinger)同时分别从另一矿石(铈硅矿)中发现了另一种新的物质---铈土(Ceria)。1839年瑞典人莫桑得尔(C.G.Mosander)发现了镧和镨钕混合物(didymium)。 1885年奥地利人威斯巴克(A.V.Welsbach)从莫桑得尔认为是“新元素”的镨钕混合物中发现了镨和钕。1879年法国人布瓦普德朗(L.D.Boisbauder)发现了钐。1901年法国人德马尔赛(E.A.Demarcay)发现了铕。1880年瑞士马利纳克(J.C.G.De Marignac)发现了钆。1843年莫桑得尔发现了铽和铒。1886年布瓦普德朗发现了镝。1879年瑞典人克利夫(P.T.Cleve)发现了钬和铥。1974年美国人马瑞斯克(J.A.Marisky)等从铀裂产物中得到钷。1879年瑞典人尼尔松(L.F.Nilson)发现了钪。从1794年加多林分离出钇土至1947年制得钷,历时150多年。 § 铥的性质 稀土金属的光泽介于银和铁之间。杂质含量对它们的性质影响很大,因而载于文献中物理性质常有明显差异。镧在6°K时是超导体。大多数稀土金属呈现顺磁性,钆在0℃时比铁具有更强的铁磁性。铽、镝、钬、铒等在低温下也呈现铁磁性。镧、铈的低熔点和钐、铕、镱的 高纯试剂 氧化铥高蒸气压表现出稀土金属的物理性质有极大差异。钐、铕、钆的热中子吸收截面比广泛用于核反应堆控制材料的镉、硼还大。稀土金属具有可塑性,以钐和意为最好。除镱外,钇组稀土较铈组稀土具有更高的硬度。稀土金属的化学活性很强。当和氧作用时,生成稳定性很高的R2O3型氧化物(R表示稀土金属)。铈、镨、铽还生成CeO2、Pr6O11、TbO2型氧化物。它们的标准生成热和标准自由焓负值比钙、铝、镁氧化物的值还大。 稀土氧化物的熔点在2000℃以上,铕的原子半径最大,性质最活泼,在室温下暴露于空气中立即失去光泽,很快氧化成粉末。镧、铈是、镨、钕也易于氧化,在表面生成氧化物薄膜。金属钇、钆、镥的抗腐蚀性强,能较长时间地保持其金属光泽。稀土金属能以不同速率与水反应。铕与冷水剧烈反应释放出氢。铈组稀土金属在室温下与水反应缓慢,温度增高则反应加快。钇组稀土金属则较为稳定。稀土金属在高温下与卤素反应生成+2、+3、+4价的卤化物。无水卤化物吸水性很强,很容易水解生成ROX(X表示卤素)型卤氧化合物。稀土金属还能和硼、碳、硫、氢、氮反应生成相应的化合物。 § 铥的资源 目前世界上已知的稀土矿物及含有稀土元素的矿物有250多种,稀土元素含量较高的矿物有60多种,有工业价值的不到10种。我国稀土资源极其丰富,其特点可概括为:储量大、品种全、有价值的元素含量高、分布广。中国稀土的工业储量(按氧化物计)是国外稀土工业储量的2.2倍。国外稀土资源集中在美国、印度、巴西、澳大利亚和苏联等国,工业储量(按氧化物计)为701.11万吨。 § 铥的用途 稀土金属及其合金在炼钢中起脱氧脱硫作用,能使两者的含量降低到0.001%以下,并改变夹杂物的形态,细化晶粒,从而改善钢的加工性能,提高强度、韧性、耐腐蚀性和抗氧化性等。稀土金属及其合金用于制造球墨铸铁、高强灰铸铁和蠕墨铸铁,能改变铸铁中石墨的形态,改善铸造工艺,提高铸铁的机械性能。在青铜和黄铜冶炼中添加少量的稀土金属能提高合金的强度、延伸率、耐热性和导 氧化铥电性。在铸造铝硅合金中添加1%-1.5%的稀土金属,可以提高高温强度。在铝合金导线中添加稀土金属,能提高抗张强度和耐腐蚀性。Fe-Cr-Al电热合金中添加0.3%的稀土金属,能提高抗氧化能力,增加电阻率和高温强度。在钛及其合金中添加稀土金属能细化晶粒,降低蠕变率,改善高温抗腐蚀性能。用铈族混合稀土氯化物和富镧稀土氯化物制备的微球分子筛,用于石油催化裂化过程。稀土金属和过渡金属复合氧化物催化剂用于氧化净化,能使一氧化碳和碳氢化物转化为二氧化碳和水。镨钕环烷—烷基铝—氯化烷基铝三元体系催化剂用于合成橡胶。 稀土抛光粉用于各种玻璃器件的抛光。单一的高纯稀土氧化物用于合成各种荧光体,如彩色电视红色荧光粉、投影电视白色荧光粉等荧光材料。稀土金属碘化物用于制造金属卤素灯,代替碳精棒电弧灯作照明光源。用稀土金属制备的稀土—钴硬磁合金,具有高剩磁、高矫顽力的优点。钇铁石榴石铁氧体是用高纯Y2O3和氧化铁制成单晶或多晶的铁磁材料。它们用于微波器件。高纯Gd2O3用于制备钇镓石榴石,它的单晶用作磁泡的基片。金属镧和镍制成的LaNi5贮氢材料,吸氢和放氢速度快,每摩尔LaNi5可贮存6.5—6.7摩尔氢。在原子能工业中,利用铕和钆的同位素的中子吸收截面大的特性,作轻水堆和快中子增殖堆的控制棒和中子吸收剂。稀土元素作为微量化肥,对农作物有增产效果。打火石是稀土发火合金的传统用途,目前仍是铈组稀土金属的重要用途。 § 参考资料 1、仿真化学实验室 2、http://www.cnitdc.com/kepu/kpzc.asp?smallid=54&smallname=铥 |
随便看 |
百科全书收录594082条中文百科知识,基本涵盖了大多数领域的百科知识,是一部内容开放、自由的电子版百科全书。