词条 | 菱铁矿 |
释义 | § 简介 菱铁矿菱面体晶胞 arh=0.576nm;α=47°54′;Z=2;六方晶胞:ah=0.468nm,ch=1.526nm;Z=6。与方解石同结构。 形态 晶体呈菱面体状、短柱状或偏三角面体状。通常呈粒状、土状、致密块状集合体。 物理性质 富Mg端员白色或浅黄白色、灰白色,有时带淡红色调,富Fe者呈黄至褐色、棕色;玻菱铁矿 璃光泽。解理{101}完全。硬度3.5~4.5。相对密度2.9~4.0,富Fe者相对密度和折射率均增大。 成因及产状 菱镁矿主要由含Mg热液交代白云石及超基性岩而成,此外也有沉积型。菱铁矿也具有沉积型和热液型两种。 鉴定特征 与方解石相似,区别在于粉末加冷HCl不起泡或作用极慢,加热HCl则剧烈起泡。 菱铁矿 FeCO3,FeO62.01%,CO237.99%,常含Mg和Mn。三方晶系。常见菱面体,晶面常弯曲。其集合体成粗粒状至细粒状。亦有呈结核状、葡萄状、土状者。黄色、浅褐黄色(风化后为深褐色),玻璃光泽。硬度3.5~4.5,比重3.96左右,因Mg和Mn的含量不同而有所变化。晶体属三方晶系的碳酸盐矿物。经常有锰、镁等替代铁,形成锰菱铁矿、镁菱铁矿等变种。菱铁矿通常呈显晶粒状或隐晶质致密块状。呈隐晶质球粒状的称球菱铁矿;隐晶质凝胶状的称胶菱铁矿。菱铁矿一般呈灰白或黄白色,风化后呈褐色,褐黑色。摩斯硬度4。比重3.7~4.0,随成分中Mn和Mg含量的升高而降低。热液成因的菱铁矿常见于金属矿脉中;沉积成因的菱铁矿常见于页岩层、粘土层和煤层中。在氧化带易水解成褐铁矿,形成铁帽。菱铁矿大量聚集而且硫、磷等有害杂质的含量小于0.04%时,可作为铁矿石开采。 菱铁矿常呈结核体或放射状球粒结构的菱铁矿产出;铁的硫化物包括黄铁矿和白铁矿。 菱铁矿岩分布于中国贵州、陕西等省,可构成一定规模的矿床,菱铁矿是典型的成岩矿物,因此菱铁矿矿床大多属成岩期形成的层控矿床。 湖沼相铁质岩:产于某些中、高纬度的沼泽与湖泊中,矿石的结构有鲕状、结核状、球粒状、疏松土状等。矿石成分以针铁矿常见,其次是菱铁矿、蓝铁矿。古代的湖沼相铁矿常与含煤地层共生,矿石成分以菱铁矿为主。 § 产状及产地 菱铁矿菱铁矿的成因主要有二。其一,外生成因,产自沉积岩中:这些层状的碎屑沉积岩大多带有来自生物的有机组份--例如(黑色)页岩、煤层等,换言之,菱铁矿是在低氧的情况下藉生物作用形成;其二,形成于中温至低温的热液矿脉内:菱铁矿常见于变质沉积岩中,是热液堆积后形成的脉石矿物;此外,伟晶岩中亦可能出现菱铁矿。其一,外生成因,产自沉积岩中:这些层状的碎屑沉积岩大多带有来自生物的有机组份--例如(黑色)页岩、煤层等,换言之,菱铁矿是在低氧的情况下借生物作用形成;其二,形成于中温至低温的热液矿脉内:菱铁矿常见于变质沉积岩中,是热液堆积后形成的脉石矿物;此外,伟晶岩中亦可能出现菱铁矿。其常见的共生矿物有:石英、黄铁矿(pyrite)、褐铁矿(limonite)、针铁矿(goethite)、黄铜矿(chalcopyrite)、闪锌矿(sphalerite)、冰晶石(cryolite)、方铅矿(galena)、重晶石(barite)、方解石、白云石(dolomite)、萤石(fluorite)等。其常见的共生矿物有:石英、黄铁矿(pyrite)、褐铁矿(limonite)、针铁矿(goethite)、黄铜矿(chalcopyrite)、闪锌矿(sphalerite)、冰晶石(cryolite)、方铅矿(galena)、重晶石(barite)、方解石、白云石(dolomite)、萤石(fluorite)等。 世界着名的菱铁矿产地有:波兰,捷克波西米亚(Bohemia),德国的Harz山脉和Freiberg,法国Lorraine,英国Cornwall,葡萄牙BieraBaixa,美国宾州、密西根州、犹他州、俄亥俄州东部、科罗拉多州、康乃狄格州Roxbury、纽泽西州Franklin、加州SanBernardinoCounty、威斯康辛州Ladysmith、亚利桑那州AntlerMine、纽约州,育空RapidCreek,加拿大蒙特利尔FranconQuarry、魁北克MontSaint-Hilaire,巴西MinasGerais,祕鲁Huancavelica,玻利维亚Tatasi,澳洲新南威尔州BrokenHill、ProspectHill,纳米比亚Otavi的Tsumeb,格陵兰Ivigtut。 § 原料特点 菱铁矿铁元素(Ferrum)的原子序数为26,符号为Fe。在元素周期表上,铁是第四周期第八副族(ⅧB)的元素。它与钴和镍同属四周期ⅧB族。 在自然界中,铁元素有4种稳定同位素,其同位素丰度(%)如下(Hertz,1960):54Fe—5.81,56Fe—91.64,57Fe—2.21,58Fe—0.34。铁的原子量平均为55.847(当12C=12.000时)。 铁的原子半径,取12配位数时,为1.26×10-10m。铁的原子体积为7.1cm3/克原子,原子密度为7.86g/cm3。铁原子的电子结构是3d64s2。铁原子很容易失掉最外层的两个s电子而呈正二价离子(Fe2 )。如果再失掉次外层的1个d电子,则呈正三价离子(Fe3 )。铁元素的这种变价特征,导致铁在不同氧化还原反应中显示出不同的地球化学性质。铁原子失去第一个电子的电离势(I1)为7.90eV,失去第二个电子的电离势(I2)为16.18eV,失去第三个电子的电离势(I3)为30.64eV。 铁的离子半径随配位数和离子电荷而变化。据Ahrens(1952)资料,取6配位数时,Fe2 的离子半径为0.074nm,Fe3 的离子半径为0.064nm。铁离子在含氧盐和卤化物等中构成离子化合物。铁常与硫和砷等构成共价化合物。铁的共价半径为1.17×10-10m。其键性强度可用铁和硫、砷等的电负性差求得。铁的电负性,Fe2 为1.8,Fe3 为1.9(波林,1964)。凡是原子半径与铁相近的元素,当晶体结构相同时,易与铁形成金属互化物,如铁和铂族形成的金属互化物粗铂矿(Pt,Fe)。凡是离子半径与铁相近的元素,当化学结构式相同时,易与铁发生类质同象替换,如硅酸盐中的铁橄榄石和镁橄榄石类质同象系列;碳酸盐中的菱铁矿和菱锰矿类质同象系列;以及钨酸盐中的钨铁矿和钨锰矿类质同象系列,等等。离子电位(Φ)是一个重要的地球化学指标。Fe2 的离子电位为2.70,可在水溶液中呈自由离子(Fe2 )迁移。Fe3 的离子电位较高,为4.69,它易呈水解产物沉淀。因此,在还原条件下,有利于Fe2 呈自由离子迁移;在氧化条件下,则Fe2 易氧化为Fe3 而呈水解产物沉淀。与铁共沉淀的元素(同价的或异价的)共生组合,可用离子电位图来预测。铁及其化合物的密度、熔点和沸点,以及它们在水中的溶解度或溶度积,是决定铁进行地球化学迁移的重要物理常数。 铁化合物的溶度积(18℃时),Fe(OH)3为1.1×10-36,Fe(OH)2为1.04×10-14,FeS为3.7×10-19,等等。铁的熔化潜热为269.55J/g,蒸发潜热为6343J/g。 § 相关研究 菱铁矿菱铁矿属于方解石族的矿物,族中的矿物彼此异质同型(isomorphous):由于各矿物的结晶构造相似,因此它们具许多相似的物理性质,包括:属于六方晶系、三方(次)晶系(trigonal)--晶型多为菱面体或scalenohedron,有三组发育优良的菱面体解理,透明菱面体结晶具有双折射(doublerefraction)现象等。实际上,矿物组成中的阳离子之间,彼此可以完全地相互取代,形成一系列的固溶液(solidsolution),因此矿物之间的分辨可能变得较为困难。 前述曾经提及菱铁矿会产自具有有机组份的沉积岩中,例如黑色页岩、煤层中,我们不妨想像一下菱铁矿的形成环境:一个古代的沼泽地区,许多植物的残块,举凡木干、枝叶等散布其中,这是未来煤矿、煤炭形成的温床,由于这个环境中有水、有溶解的铁质,是个缺氧的环境,因此也适合菱铁矿的形成,这就是含煤沉积岩中常见菱铁矿的原因。 这些沉积岩中的菱铁矿多以层状或结核(nodule,concretion)产出,所谓的结核,是菱铁矿晶体堆积、包覆着一个核心,然后再向外层层包覆、生长而形成,这个核心大多是其他矿物,例如:黄铁矿、闪锌矿、燧石(chert)等,但是在美国伊利诺州MazonCreek地区的页岩中,菱铁矿结核中包覆的不是矿物,而是在那古沼泽地区、与煤矿物源共同生活的植物与动物们。这种包覆动物或植物化石的菱铁矿结核,以伊利诺州的最为着名,不过除此之外,印度西部等其他地区也有产出,并不是只有一个地方看的到。 § 共生矿物 菱铁矿磁铁矿 FeO31.03%,Fe2O368.97%或含Fe72.2%,O27.6%,等轴晶系。单晶体常呈八面体,较少呈菱形十二面体。在菱形十二面体面上,长对角线方向常现条纹。集合体多呈致密块状和粒状。颜色为铁黑色、条痕为黑色,半金属光泽,不透明。硬度5.5~6.5。 赤铁矿 Fe69.94%,O30.06%,常含类质同象混入物Ti、Al、Mn、Fe2 、Ca、Mg及少量Ga和Co。三方晶系,完好晶体少见。结晶赤铁矿为钢灰色,隐晶质;土状赤铁矿呈红色。条痕为樱桃红色或鲜猪肝色。金属至半金属光泽。有时光泽暗淡。硬度5~6。比重5~5.3。 磁赤铁矿 γ-Fe2O3,其化学组成中常含有Mg、Ti和Mn等混入物。等轴晶系,五角三四面体晶类,多呈粒状集合体,致密块状,常具磁铁矿假象。颜色及条痕均为褐色,硬度5,比重4.88,强磁性。 菱铁矿钛铁矿 FeTiO3,Fe36.8%,Ti36.6%,O31.6%。三方晶系。菱面体晶类。常呈不规则粒状、鳞片状或厚板状。在950℃以上钛铁矿与赤铁矿形成完全类质同象。当温度降低时,即发生熔离,故钛铁矿中常含有细小鳞片状赤铁矿包体。钛铁矿颜色为铁黑色或钢灰色。条痕为钢灰色或黑色。含赤铁矿包体时呈褐色或带褐的红色条痕。金属-半金属光泽。不透明,无解理。硬度5~6.5,比重4~5。弱磁性。 针铁矿 α-FeO(OH),含Fe62.9%。含不定量的吸附水者,称水针铁矿HFeO2·NH2O。斜方晶系,形态有针状、柱状、薄板状或鳞片状。通常呈豆状、肾状或钟乳状。切面具平行或放射纤维状构造。有时成致密块状、土状,也有呈鲕状。颜色红褐、暗褐至黑褐。经风化而成的粉末状、赭石状褐铁矿则呈黄褐色。针铁矿条痕为红褐色,硬度5~5.5,比重4~4.3。而褐铁矿条痕则一般为淡褐或黄褐色,硬度1~4,比重3.3~4。 纤铁矿 γ-FeO(OH),含Fe62.9%。含不定量的吸附水者,称水纤铁矿FeO(OH)·NH2O。斜方晶系。常见鳞片状或纤维状集合体。颜色暗红至黑红色。条痕为桔红色或砖红色。硬度4~5,比重4.01~4.1。 § 冶矿历史 菱铁矿菱铁矿 中国古代金属矿产,明代以前主要有铁、铜、锡、铅、银、金、汞,金属锌的生产,则在明代开始见于记载。有关古代矿冶业的文献记载,早期仅有产地而无产量。《新唐书·食货志》首次记载全国银、铜、铁、锡的年收入量。历代文献中的年收入量并不等于年产量,而往往是税收量、征集量、官营矿冶产量等。不同文献之间也常有很大差异。 夏代到战国对夏代矿冶业还很少研究成果。河南登封相当夏纪元的遗址中出土有铜片。商、周是青铜器的鼎盛时代。青铜冶铸业中心是在中原地区,部分原料则可能来自南方。《诗经·鲁颂》说:“憬彼淮夷,来献其琛,元龟象齿,大赂南金。”淮夷贡献的除海龟和象牙外,还有南方出产的金属,反映当时中国南部金属矿冶业的发达。《周礼·地官》中说:“人掌金玉锡石之地”,这是古代文献关于矿业的最早记载,反映当时已特设专职官员掌管官营矿业了。 春秋战国之际进入铁器时代。战国冶铁业兴盛,生产的铁器以农具、手工工具为主,兵器则青铜、钢、铁兼而有之,铜、铁矿业均盛。根据文献记载和考古发掘资料,今山东临淄和河北邯郸的铁矿、湖北大冶铜绿山的铜矿(见铜绿山矿冶遗址)、山东的铅矿以及汉水、汝河和金沙江的砂金等,春秋战国时期都已进行开采。菱铁矿秦汉到南北朝秦统一中国后,在产铁的地区设置铁官,以增加国库收入,巩固中央集权制度。汉初,一些诸侯国的冶铁业实际操纵在少数豪强大族手中。汉武帝于元狩四年(公元前119)在49个产铁地区设置铁官。这些铁官驻在地分布于今山东省境内的有12处,江苏7处,河南、陕西各6处,河北、山西各5处,四川3处,北京、辽宁、安徽、湖南、甘肃各一处。从铁官分布情况看,西汉冶铁业是在战国时期的基础上发展起来的,大部分分布在北方的齐、秦、燕、赵、魏、韩六国范围内,长江以南的广大地区只有桂阳郡(湖南郴县)一处设有铁官。西汉铜产地以长江中下游最为重要,在丹阳设有铜官。 关于秦汉之际的金属矿产地,司马迁在《史记·货殖列传》中说,金、锡、辰砂等主要出在江南,铜、铁两种矿藏,在千里之内分布得就像棋盘上的棋子那样。此外,还提到西南的巴蜀也盛产辰砂和铜、铁。东汉设铁官34处,分布地区基本承袋前代,仅云南两处是新设。此外,在中条山开辟新的铜矿区,云南的锡、铅和银,四川、贵州的汞和川、滇境内的沙金等,均有所发展。魏晋南北朝时期战乱频仍,黄河中游的官营冶铁业还能维持生产。长江以南地区受到的破坏较少,在今江苏、浙江、湖北等省境内有较多的冶铁作坊继续得到发展,铜、银、金矿则兴废无常,趋于衰落。 § 价值应用 菱铁矿菱铁矿(FeCO3)作为一种传统矿物资源,长期以来一直用作冶炼钢铁。近几十年来的进一步研究发现,菱铁矿经热处理后可产生磁性矿物,分解产物变化非常复杂,而且表现出一系列异常的磁学现象,使菱铁矿热分解的主要产物具有极大的潜在应用价值,逐渐引起人们的兴趣。 中国菱铁矿资源十分丰富,目前已探明储量近20亿吨,另存保有储量近20亿吨。主要分布在西部地区,其中新疆、青海、甘肃、陕西与云南等五个省的菱铁矿储量都超过亿吨。如陕西临水大西沟菱铁矿矿床储量超过三亿吨。但巳利用的菱铁矿不足总储量的10%。主要用于冶炼钢铁,在其他方面的应用基本处于空白。 基于从菱铁矿的热分解产物所具有的潜在应用价值,利用其在高温分解时产生磁性物质的特点,我们已研制出完全新型的磁性日用陶瓷。这种陶瓷的主要特点是坯体中含有分布均匀的磁性矿物,可显示磁性,由于是热剩磁, 菱铁矿故可长久保留。因而可以作为磁性保健用品,如磁化杯、磁储水器以及磁性浴缸;还可制作农产品以及花卉的栽培载体和输水管道,以及保健建筑材料等。如再作深化研究,还有可能作结构陶瓷与功能陶瓷的原料。总之,这项研究具有极大的社会意义和经济效益。 采用以天然纯菱铁矿为主要原料研制磁性日用陶瓷,目前在国内外尚属首次。所研制成的这种磁性陶瓷的特点在于:原料价格低廉且储量丰富、工艺简单成本较低、无毒无放射性,有利于工业化大规模生产, 应用前景十分宽广,经济效益也十分可观。 有关测试数据如下: 吸水率:<;0.5% 抗折强度:>;650 Kg/cm2 莫氏硬度:>;6.5 热稳定性:700℃不开裂 强度比普通硅酸盐陶瓷高。 磁性测试:磁化率X比=8319-18636(10-8m3Kg-1) (赤铁矿=60-600 磁铁矿=5.7x104) [1] |
随便看 |
百科全书收录594082条中文百科知识,基本涵盖了大多数领域的百科知识,是一部内容开放、自由的电子版百科全书。