词条 | 熵定律 |
释义 | § 自然界的最高定律 在等势面上,熵增原理反映了非热能与热能之间的转换具有方向性,即非热能转变为热能效率可以100%,而热能转变成非热能时效率则小于100%(转换效率与温差成正比),这种规律制约着自然界能源的演变方向,对人类生产、生活影响巨大;在重力场中,热流方向由体系的势焓(势能+焓)差决定,即热量自动地从高势焓区传导至低势焓区,当出现高势焓区低温和低势焓区高温时,热量自动地从低温区传导至高温区,且不需付出其它代价,即绝对熵减过程。显然熵所描述的能量转化规律比能量守恒定律更重要,通俗地讲:熵定律是"老板",决定着企业的发展方向,而能量守恒定律是"出纳",负责收支平衡,所以说熵定律是自然界的最高定律。熵定律 § 【熵与宇宙模型】 目前流行的大爆炸理论仍然是崇尚热寂的,只不过换个说法而已,该理论认为:对于一个静态的体系(或宇宙中的局部空间)熵仍趋于最大值,但膨胀的(看着气体膨胀)宇宙会拉大温差,宇宙根本不能达到平衡态,所以宇宙不会出现热寂。举个通俗的例子,一池塘清水,有污水不断向池里流入,水质面临恶化,如果外界又不断地向池中加入清水,且加入清水的量远多于污水,毫无疑问这池水永远是清水(设池塘容积可增加)。熵增原理是在忽略引力作用时得到的规律,而在研究宇宙熵变时引力就不能忽视,所以笔者认为大爆炸理论对熵的解释是错误的,不论宇宙是膨胀、收缩或静态,宇宙都不会进入热寂,因为星体引力具有减熵的能力,而高温星体向太空辐射光和热,这是熵增过程,这两种相反的热流将永恒的对峙着,实现熵和热的大环流,所以说,即使是有限的宇空也永远不会出现热寂。仍用上述例子,一池塘清水,有污水不断向池里流入,但池塘有自净功能,有能力处理流入的污中,所以水质不会恶化。 § 【分熵的特点】 熵概念源于卡诺热机循环效率的研究,是以热温商的形式而问世的,当计算某体系发生状态变化所引起的熵变总离不开两点,一是可逆过程;二是热量的得失,故总熵概念摆脱不了热温商这个原始外衣。当用状态数来认识熵的本质时,我们通过研究发现,理想气体体系的总微观状态数受宏观的体积、温度参数的控制,进而得到体系的总熵等于体积熵与温度熵之和(见有关文章),用分熵概念考察体系的熵变化,不必设计什么可逆路径,概念直观、计算方便(已被部分专家认可),因而有利于教和学。 § 【熵计算公式介绍】 1、克劳修斯首次从宏观角度提出熵概念,其计算公式为:S=Q/T ,(计算熵差时,式中应为△Q) 2、波尔兹曼又从微观角度提出熵概念,公式为:S=klnΩ,Ω是微观状态数,通常又把S当着描述混乱成度的量。 3、笔者针对Ω不易理解、使用不便的现状,研究认为Ω与理想气体体系的宏观参量成正比,即:Ω(T)=(T/εT)3/2 , Ω(V)=V/εV,得到理想气体的体积熵为SV=klnΩv=klnV,温度熵为ST=klnΩT=(3/2)klnT ,计算任意过程的熵差公式为△S=(3/2)kln(T'/T)+kln(V'/V),这微观与宏观关系式及分熵公式,具有易于理解、使用方便的特点,有利于教和学,可称为第三代熵公式。 上述三代熵公式,使用的物理量从形式上看具有"直观→抽象→直观"的特点,我们认为这不是概念游戏,是对熵概念认识的一次飞跃。 § 【熵流 】 熵流是普里戈津在研究热力学ki/%E6%A6%82%E5%BF%B5" class=innerlink>概念(普里戈津是比利时科学家,因对热力学理论有所发展,获得1977年诺贝尔化学奖),普氏的熵流概念是指系统与外界交换的物质流及能量流。我们认为这个定义不太精辟,这应从熵的本质来认识它,不错物质流一定是熵的载体,而能量流则不一定,能量可分热能和非热能[如电能、机械能、光能(不是热辐射)],当某绝热系统与外界交换非热能(发生可逆变化)时,如通电导线(超导材料)经过绝热系统内,对体系内熵没有影响,准确地说能量流中只有热能流(含热辐射)能引人熵流(对非绝热系统)。对于实际情形,非热能作用于系统发生的多是不可逆过程,会有热效应产生,这时系统出现熵增加,这只能叫(有原因的)熵产生,而不能叫熵流的流入,因能量流不等于熵流,所以不论什么形式的非热能流都不能叫熵流,更不能笼统地把能量流称为熵流。 § 【熵减应分 类】 人们过去认识的熵减,其机理是流出系统的熵流大于系统内的熵产生(对开放系统),习惯上称流入系统的负熵流大于系统内熵产生,从系统内外一并考察总熵变化仍大于零,服从熵增原理,换句话说,此处熵减是以彼处熵增为代价的,故这类熵减应叫相对熵减。而引力在引力方向能拉开温差,把低温区的热量自动地转移到高温区,经计算表明这是熵减!这并不伴随引力的削弱(引力是物质的固有的性质),也不以任何地方或形式的熵增为代价,所以说这种熵减是绝对熵减,是不服从熵增原理的。 § 【电冰箱不能实现熵的减少】 克劳修斯把熵增原理表述为:"热量不能自动地从低温物体传向高温物体",这给人们一个错觉外界做功使热量从低温物体传到高温物体,或者说使等温体变成不等温体,就意味着发生熵减。这种认识是偏面的,以绝热房间内放一工作的电冰箱为例,冰箱内温度变低,冰箱外的房间内温度变高,许多人把这外界做功而拉开温差的现象叫做熵减,并解释将发电厂一并考虑在内,总体上仍是熵增。这种看法是错误的,仅就室内的冰箱内外来说,如果考虑了电流的热效应,这个室内的总熵变化只增不减(不信可计算一下)。外界做功不能使绝热系统内的熵减少,不论是电能、机械能等非热能做功(通常不能避免热效应)都不能使绝热系统内的熵减少,所以说,我们认为熵增原理准确的表述应为:"在等势面上,绝热系统内的熵永不减少"。 § 【熵减和永动机的关系】 许多人都认为发现了熵减就等于说能制造出第二类永动机,这种看法是一种误解,解释如下:在宇宙中只有星体引力能导致熵减,当星体外部势焓大于内部势焓时, 星体具有向引力中心云集热量的功能,实现了热量自动地从低温区转移到高温区,对于温度比较高的星体,又以辐射的形式向外释放能量,故星体具有永动机的性质,但星体不能人工制造,更无法利用这一原理造出一台机器,从单一热源(大气或水中)吸热获得机械能,所以说存在熵减并不能制造出永动机。假设人工能造出第二类永动机,那一定是熵减过程,熵减和永动机就是这种特殊的关系。 § 【地热特点及来源】 地下热能储量巨大,相当于全球煤炭储量的1.7亿倍。有人估算,以当今全世界耗能总量计算,即使全部使用地热能,4100万年后才能使地球内部的温度下降 1℃。地热的特点呈内高外低分布,我们认为(另有论文)它遵循"可压缩流体的静力学方程",即势焓(势能+焓)平衡规律,当地内势焓低于地表势焓时,重力具有云集地表低温热能向地心转移的机制,地热是永恒存在的能源。关于地热来源问题,目前人们尚无准确定论,主要有两种解释: 1.地球内部的放射性元素蜕变放热,即原子能; 2.地球在形成初期带来的热量。我们对上述解释的看法是,如果是第一种,有三种情况: ①地热温度呈外低内高按一定梯度的分布,那热源必在地心,这不就是原子弹吗?后果不堪设想; ②矿物分布通常遵循"物以类聚"的原则,如果地球内部的放射性元素分布(热源)与地热分布一致?显然这不合情理; ③地下温泉或岩浆(石头)应该裹挟着很强的放射性物质,实际上没有,所以说地热的主要来源不可能是放射性元素蜕变。如果是第二种,一是体积收缩挤压产生;二是本来是高温体,冷却至今形成热量梯度分布,这种可能性是有的。我们认为也有第三种可能,即地球形成时温度是均匀的而又不是十分高温的物质,从45亿年前至今,重力将地表低温区热能向地心转移,使热量形成梯度分布(中心约5000℃),逐步实现势焓平衡。 § 【 面对能源贬值的问题】 第二次工业革命以来,人类在疯狂地开采使用矿物能源(尤其是发达国家),使矿物能源日趋减少,总有一天要枯竭待尽,怎么办呢?人们通常认为有如下对策:从小的方面讲,我们要节约能源,减少不必要的能源浪费,尽量使用可再生能源;从大的方面看,要研究使用长久不衰的能源,如太阳能(还有几十亿年的寿命),原子能尤其是核聚变能(以海水为原料,足够人类使用几十亿年),采取上述综合措施,人类就能被动地逾越能源贬值的灾难,而人为主动改变能源贬值的趋势是做不到的。只有引力具有回天之术,实现能源的进化,故地热是取之不尽、用之不竭的,是绝对意义上的可再生能源。重力云集地表热能的能力与地下物质的分子量成正比,如山区是地热的富集区,人类应重视开发利用。 |
随便看 |
百科全书收录594082条中文百科知识,基本涵盖了大多数领域的百科知识,是一部内容开放、自由的电子版百科全书。