词条 | 波形估计 |
释义 | § 波形估计 § 正文 对于两个相关的随机过程y(t)和z(t),可以用第二个过程的某些观测值z(ζ)来对第一个过程y(t)(一般称为信号)的各种参量进行估计。如果用g(t)表示被估计的量,则g(t)可能是y(t)、懭(t)或y(t+α)等等。根据z(t)在时间轴上某一集合 I(从-∞到t中的一些离散点或一个区间)的观测值,寻找一个合适的数据变换T,使它成为g(t)的最好估计(t)。即 (t)=T【z(ζ),ζ∈I】当 g(t)=y(t+α) (α>0) 时,就是所谓预测问题。当 g(t)=y(t)时,就是所谓过滤问题。当 g(t)=y(t+α) (α<0,t∈【t0,tf】)时,就是所谓平滑(或叫内插)问题。所谓最好的估计,是指这一估计所付出的“平均代价”最小。有各种不同的“代价”函数,如均方误差代价(E{(g(t)-(t))2})或平均绝对误差代价(E{│g(t)-(t)│})等 (E{ }为求数学期望的符号)。如果z(t)是正态过程,对于均方误差代价最好的估计T是线性的。对于非正态过程,则线性估计不一定最好。但是,由于线性估计比较简单,所以常常被采用。对于平稳随机过程,最好的线性波形估计就是著名的维纳滤波。对于非平稳随机过程,可以采用所谓卡尔曼滤波进行估计。 § 配图 § 相关连接 |
随便看 |
百科全书收录594082条中文百科知识,基本涵盖了大多数领域的百科知识,是一部内容开放、自由的电子版百科全书。