请输入您要查询的百科知识:

 

词条 放射线
释义 放射线

不稳定元素衰变时,从原子核中放射出来的有穿透性的粒子束,分甲种射线、乙种射线、丙种射线,其中丙种射线贯穿力最强。

§ 实验

放射线

1895年,在伦琴发现X射线的那一年,年轻的卢瑟福从新西兰远渡重洋来到英国,到有名的卡文迪许实验室学习和工作。汤姆逊热情地欢迎了他。一开始,他研究刚发现的X射线。当贝克勒耳发现放射线以后,在汤姆逊的建议下,卢瑟福立即转而研究放射线。 卢瑟福把铀装在铅罐里,罐上只留一个小孔,铀的射线只能由小孔放出来,成为一小束。他用纸张、云母、玻璃、铝箔以及各种厚度的金属板去遮挡这束射线,结果发现铀的射线并不是由同一类物质组成的。其中有一类射线只要一张纸就能完全挡住,他把它叫做“软”射线;另一类射线则穿透性极强,几十厘米厚的 铝板也不能完全挡住,他把它叫做“硬”射线。

正在这时候,居里夫妇发现了镭,并且用磁场来研究镭的射线。结果发现在磁场的作用下,射线分成两束。其中一束不被磁场偏转,仍然沿直线进行,就像X射线那样;另一束在磁场的作 用下弯曲了,就像阴极射线一样。

用磁场研究射线,在卡文迪许实验室里可是拿手好戏,实验室主任汤姆逊在不久之前就是利用磁场、电场来研究阴极射线而发现电子的。居里夫妇的研究情况传到了英国,卢瑟福立刻用更强的磁场来研究铀(这时他手中还没有新发现的镭)的射线。 结果,铀的射线被分开了,不是两股,而是三股。新发现的 一股略有弯曲,卢瑟福把它叫做α(阿耳法)射线;那一股弯曲得 很厉害的叫做β(贝他)射线;不被磁场弯曲的那一股叫做γ(伽玛)射线。

卢瑟福分别研究了三种射线的穿透本领。结果是:

α射线的穿透本领最差,它在空气中最远只能走7厘米。一薄片云母,一张0.05毫米的铝箔,一张普通纸都能把它挡住。

β射线的穿透本领比α射线强一些,能穿透几毫米厚的铝片。

γ射线的穿透本领极强,1.3厘米厚的铅板也只能使它的强度减弱一半。

§ 物质组成

放射线

居里用汤姆逊研究阴极射线的方法去测定了β射线,证明了β射线和阴极射线性质一样,是带阴电的电子流,只不过速度更快 一些。y射线和X射线类似,都是波长非常短的电磁波。

由于α射线和β射线在磁场中弯曲的方向相反,显然α射线带的电荷和β射线正相反,α射线应该是带阳电(正电)荷的粒子流。 卢瑟福用了几年时间专心研究α射线,最后才证明α射线是 失去两个电子的氦原子(氦离子)流。

§ 危害

人体受到放射线的照射,随着射线作用剂量的增大,有可能随机地出现某些有害效应。例如它可能诱发白血病、甲状腺癌、骨肿瘤等恶性肿瘤;也可能引起人体遗传物质发生基因突变和染色体畸变,造成先天性畸形、流产、死胎、不育等病症。不过,这种情况发生的几率很低,其危险度一般没有超过目前人们可以接受的范围。

在事故情况下,如果人体所受射线的剂量达到一定程度,就可能出现一些明确的预期的有害效应。如人体眼晶体一次受到2戈瑞以上的X或γ射线的照射,在3周以后就可能出现晶状体混浊,形成白内障;人体皮肤受到不同剂量的照射,可分别出现脱毛、红斑、水泡及溃疡坏死等损害;另外,还可能引起贫血、免疫功能降低、寿命缩短以及内分泌和生殖机能失调等。

当人体在短时间(数秒至数日)受到大于1戈瑞剂量的射线照射后,就会产生急性放射病,危及生命;机体在较长时间内受到超剂量限值的射线作用后可能导致慢性放射病,造成以造血组织损伤为主的全身慢性放射损伤。这种情况主要针对从事射线工作的职业人员,很少在公众中发生,也不包括局部的医疗照射。

放射线也能为人类造福。医院使用射线常常用于人体某些疾病的诊断和治疗,可以起到独特的效果。同时,它也广泛地应用于工农业、科研及国防建设等领域。我们关键是要做到科学地使用,严格地加强防护,从而使人体免受其危害。

§ 人工射线

x射线和伽玛射线探测器

各种射线,既可以依靠天然放射线物质和从宇宙射线中获得,也可以通过各种粒子加速器制造出来。另外也能够用来产生射线的机器——原子核反应堆。

种类

天然射线源一般强度比较低,而且难以根据需要任意调节,不能很好满足科技工作的需要。为此,人们探索能够产生强度大、能量高、性能好、容易调节和控制的射线源,研制出各种粒子加速器。许多粒子如电子、质子、α粒子等等都是带电的,它们可在电磁场中被加速而获得很高的能量。这种能够使带电粒子在电磁场作用下加速并获得很高能量的机器就是粒子加速器。

粒子加速器有很多种。按粒子最终可获得的能量来分,有低能、中能和高能粒子加速器;按带电粒子所走的轨迹来分,有直线型、圆型和螺旋型;按加速器电场分类,则有利用直流高压电场加速的,利用高频谐振电场加速的和利用磁场变化所产生的感应电场加速的等。按被加速的带电粒子种类来分,则有电子、质子、氘核和各种重元素离子加速器。它们各自都有适用于自己的粒子品种、能量范围以及性能特色。

优点

几十年来,它们在相互竞争中不断地发展、完善和更新,同时也在竞争和发展中相互补充。这种用人工方法制造的粒子射线源的很大的优越性,主要有以下一些:

(1)天然的射线源一般只能产生有限的几种射线,如中子、γ射线、β射线、α射线等,而粒子加速器所能产生的射线种类要多得多,例如重离子加速器可以产生出从氢到铀的所有元素的离子束。

(2)由加速器产生的射线束的能量和强度可以根据需要任意选择和精确控制。

(3)加速器产生的粒子束流强度高、性能好。

(4)加速器可以根据需要随时运行和停机,停机以后就不再产生射线,便于管理和维修。

原子核反应堆

费米伽玛射线太空望远镜

除了加速器以外,原子核反应堆也是人们制造出来的一种能够产生射线的机器。

自从1932 年恰德维克发现了中子以后,科学家们立即意识到他们已经掌握了一把打开原子核神秘宫殿大门的钥匙。因为中子不带电,比较容易打入原子核内部,引起核反应。1938年德国物理学家O.哈恩和F.斯特拉斯曼用中子轰击235U时,发现235U裂变为两片,实现了核裂变,同时释放出大量的能量。一个235U 核裂变的过程中,还会同时释放出2~3 个中子。这2~3 个中子又可以去轰击2~3 个235U 引起核裂变,同时又产生出更多的中子⋯⋯,这样反复进行下去,可以在瞬间使许多235U 发生裂变,释放出惊人的能量和大量的中子和其它射线。这种反应就是所谓的链式反应。

核裂变的发现引起了很大的轰动,并很快将它推向应用。核裂变的应用朝着两个方向发展:一个是用于研制原子弹,这是利用不加控制的链式反应的原理制成的;另一个就是美国科学家研究出了控制连锁反应速度的办法,研制成世界上第一个原子核反应堆。利用反应堆作为射线源的途径是多种多样的,既可以直接利用反应堆本身作为射线源,也可以间接地利用反应堆产生的各种放射性同位素物质作为射线源。

直接利用

(1)在反应堆中心(活性区)的水平方向或垂直方向开设一些引出射线的孔道,在孔道处直接利用反应堆内的射线。这样引出来的射线强度很高,但是射线种类复杂,能量分散。

(2)第二种方法是在第一种方法的基础上加屏蔽物对孔道引出的射线进行过滤。如果设法将中子屏蔽掉,只让γ射线通过,这样就可以得到单一的γ射线。如果设法将γ射线屏蔽掉而只让中子通过,就可以得到单一的中子射线。

间接利用

(1)利用反应堆的中子与一些稳定同位素发生核反应生成放射性同位素,然后再加工成同位素放射源加以利用,例如我们常见的60Coγ射线源(简称钴源)就是由59Co 稳定同位素在反应堆内经中子辐照后生成的。

(2)在反应堆上建造一条辐照回路(俗称跑兔装置)。选择某些热中子俘获截面大和可以生成半衰期较短的放射性同位素的物质,让它可以在反应堆活性区与辐照室之间循环流动。当它停留在活性区时就转化为放射性同位素;停留在辐照室时,放射性同位素蜕变,发出大量γ射线。这样不断地反复循环流动,不断地被活化,又不断地放出γ射线,不断地为我们提供取之不尽的γ射线源。用这种办法得到的射线源比较单纯,而且利用射线是在辐照室内进行的,不像在反应堆内那样受到很多限制。

§ 参考资料

[1]中国科学技术部 http://www.most.gov.cn/kxjspj/gzkp/200702/t20070201_40671.htm

[2]什么是什么 http://www.shenmeshi.com/Science/Science_20070427231458.html

随便看

 

百科全书收录594082条中文百科知识,基本涵盖了大多数领域的百科知识,是一部内容开放、自由的电子版百科全书。

 

Copyright © 2004-2023 Cnenc.net All Rights Reserved
更新时间:2025/1/19 8:42:08