词条 | 36军官问题 |
释义 | § 三十六军官问题 提出后,很长一段时间没有得到解决,直到20世纪初才被证明这样的方队是排不起来的。尽管很容易将三十六军官问题中的军团数和军阶数推广到一般的n的情况,而相应的满足条件的方队被称为n阶欧拉方。欧拉曾猜测:对任何非负整数t,n=4t+2阶欧拉方都不存在。t=1时,这就是三十六军官问题,而t=2时,n=10,数学家们构造出了10阶欧拉方,这说明欧拉猜想不对。但到1960年,数学家们彻底解决了这个问题,证明了n=4t+2(t≥2)阶欧拉方都是存在的。 § 故事 书 有一次,普鲁士腓特烈大王决定举行一次盛大的阅兵典礼,打算从6支部队里面,各选出6名不同军衔(例如上校、中校、少校;上尉、中尉、少尉)的军官 各一人,合计36人,排成一个每边正好6人的方阵,要求每行每列都必须有各个部队和各种军衔的代表,既不准重复,也不能遗漏。这件事情看来很好办,不料命 令传达下去之后,却根本无法执行。阅兵司令接二连三地吹哨子,喊口令,排来排去,始终不符合国王的要求,他急得像只热锅上的蚂蚁。执事官员和国王的侍从们一见事情不妙,只好临时找个借口,支吾过去。但这已使腓特烈大王在众多外国贵宾面前窘态毕露,出足洋相。 事后,腓特烈大王对这件事情始终耿耿于怀,认为阅兵司令竟连这点小事也办不好,真是个草包。他就自己动手试试,在纸上编排一下,可是试来试去,竟无法成功。于是他去向许多有学问的人请教,可是他们也都束手无策。最后,他不得不去请教当时欧洲第一流的大数学家欧拉,希望能找出一个解决方案。 那时欧拉已经很老了。在此之前,不知有多少个令人望而生畏的数学难题在他手里迎刃而解。但是这样一个小孩子也明白其意义的,看上去非常简单的“36 军官问题”,竟然也把他难住了。经过长期苦心研究,他终于认为国王的要求是无法满足的,也就是说,那样的6阶方阵是排不出来的。 4B 2C 5D 3E 1A 3C 1D 4E 2A 5B 2D 5E 3A 1B 4C 1E 4A 2B 5C 3D 5A 3B 1C 4D 2E 事实确是如此。不过,只要把国王的愿意略作修改,比如说,如果是从5支部队中,各选出5名不同军衔的军官各一人,共25人排成一个5阶方阵的话,那就很容易了,(如图)便是一种排法(图中的数字代表不同部队,英文字母代表不同军衔)。 |
随便看 |
百科全书收录594082条中文百科知识,基本涵盖了大多数领域的百科知识,是一部内容开放、自由的电子版百科全书。