词条 | 拓扑排序 |
释义 | § 拓扑排序 (Topological Sort) 对一个有向无环图(Directed Acyclic Graph简称DAG)G进行拓扑排序,是将G中所有顶点排成一个线性序列,使得图中任意一对顶点u和v,若<u,v> ∈E(G),则u在线性序列中出现在v之前。 通常,这样的线性序列称为满足拓扑次序(TopoiSicai Order)的序列,简称拓扑序列。 § 注意: ①若将图中顶点按拓扑次序排成一行,则图中所有的有向边均是从左指向右的。 ②若图中存在有向环,则不可能使顶点满足拓扑次序。 ③一个DAG的拓扑序列通常表示某种方案切实可行。 【例】一本书的作者将书本中的各章节学习作为顶点,各章节的先学后修关系作为边,构成一个有向图。按有向图的拓扑次序安排章节,才能保证读者在学习某章节时,其预备知识已在前面的章节里介绍过。 ④一个DAG可能有多个拓扑序列。 【例】对图G9进行拓扑排序,至少可得到如下的两个(实际远不止两个)拓扑序列:C0,C1,C2,C4,C3,C5,C7,C8,C6和C0,C7,C9,C1,C4,C2,C3,C6,C5。 ⑤当有向图中存在有向环时,拓扑序列不存在 【例】下面(a)图中的有向环重排后如(b)所示,有向边<v3,vl>和其它边反向。若有向图被用来表示某项工程实施方案或某项工作计划,则找不到该图的拓扑序列(即含有向环),就意味着该方案或计划是不可行的。 无前趋的顶点优先的拓扑排序方法 该方法的每一步总是输出当前无前趋(即人度为零)的顶点,其抽象算法可描述为: NonPreFirstTopSort(G){//优先输出无前趋的顶点 while(G中有人度为0的顶点)do{ 从G中选择一个人度为0的顶点v且输出之; 从G中删去v及其所有出边; } if(输出的顶点数目<|V(G)|) //若此条件不成立,则表示所有顶点均已输出,排序成功。 Error("G中存在有向环,排序失败!"); } 对G9执行上述算法的执行过程【参见动画演示】和得到的拓扑序列是C0,C1,C2,C4,C3,C5,C7,C9,C6。 § 注意: 无前趋的顶点优先的拓扑排序算法在具体存储结构下,为便于考察每个顶点的人度,可保存各顶点当前的人度。为避免每次选入度为0的顶点时扫描整个存储空间,可设一个栈或队列暂存所有入度为零的顶点: 在开始排序前,扫描对应的存储空间,将人度为零的顶点均入栈(队)。以后每次选人度为零的顶点时,只需做出栈(队)操作即可。 |
随便看 |
百科全书收录594082条中文百科知识,基本涵盖了大多数领域的百科知识,是一部内容开放、自由的电子版百科全书。