请输入您要查询的百科知识:

 

词条 宇宙线
释义

§ 名词概述

宇宙线

所谓宇宙射线,指的是来自于宇宙中的一种具有相当大能量的带电粒子流。1912年,德国科学家韦克多·汉斯带着电离室在乘气球升空测定空气电离度的实验中,发现电离室内的电流随海拔升高而变大,从而认定电流是来自地球以外的一种穿透性极强的射线所产生的,于是有人为之取名为“宇宙射线”。初级宇宙线中的各种粒子是人类能直接获得的太阳系外物质的唯一样品。观测初级宇宙线中元素和同位素的丰度分布,是研究恒星晚期演化过程的一个重要途径。分析各种成分和各种能量宇宙线粒子的时间变化﹐可以研究太阳系和银河系磁场的状况﹔分析宇宙线粒子轰击地球﹑陨石﹑月球和行星表面物质所形成的放射性同位素,是研究这些天体和太阳系以及银河系历史的一个重要方法。对宇宙X射线和γ射线的观测,发现了不少重要的高能天体和高能天体物理现象(见 X射线天文学﹑γ射线天文学)。由于中微子的穿透本领很强,探测宇宙中微子有可能了解星体核心的情况(见中微子天文学),所以宇宙线天文学是高能天体物理学一个重要分支。使用各种粒子探测器进行天文观测,是宇宙线天文学的一个主要特点。除中微子外﹐初级宇宙线粒子在进入地球大气后,都因同空气物质作用而被吸收﹐因此必须把粒子探测器用气球﹑火箭或人造卫星送上高诈o在大气外进行观测。利用高空气球,可以观测宇宙线荷电粒子以及能量高于10千电子伏的硬X射线和γ射线。软X射线必须在火箭或人造卫星上观测。测量能量很低的宇宙线原子核,则必须在能摆脱地磁场影响的空间探测器上进行。对于能量高于 10电子伏的宇宙线原子核,以及能量高于10电子伏的宇宙γ射线﹐可以在地面探测它们在大气中产生的空气簇射。

宇宙射线中的核子之所以能够从他们遥远的源头一直到达地球,是因为宇宙中物质的低密度。核子与其它物质有着强烈的感应,所以当宇宙线接近地球时,便开始于大气层气体中的核子撞击。在粒子雨的过程中,这些碰撞产生很多π介子和K介子,这些很快衰退为μ子的不稳定介子。由于与大气层没有强烈的感应以及时间膨胀的相对论性效应,许多μ子能够到达地球表面。μ子属于电离辐射,从而可以轻易被许多粒子探测器检测到,例如气泡室,或闪烁体探测器。如果多个μ子在同一时间被不同的探测器检测到,那么它们一定产自同一次粒子雨。

如今,新的探测手段能够不通过粒子雨这个现象检测这些高能粒子,也就是在太空中,不受大气层的干扰,直接探测宇宙线,例如阿尔法磁谱仪实验。

宇宙射线还存在着转化、簇射的过程。除中微子外,几乎所有的高能宇宙射线,在穿过大气层时都要与大气中的氧、氮等原子核发生碰撞,并转化出次级宇宙线粒子,而超高能宇宙线的次级粒子又将有足够能量产生下一代粒子,如此下去,一级一级的转化,将会产生一个庞大的粒子群。1938年,法国人奥吉尔在阿尔卑斯山观测发现了这一现象,并将其命名为“广延大气簇射”。

§ 发现过程

宇宙线

宇宙射线的迹象在最初用游离室观测放射性时就被人们注意到了,起初曾认为验电器的残余漏电是由于空气或尘土中含有放射性物质造成的。

1903年,卢瑟福和库克发现,如果小心地把所有放射源移走,在验电器中每立方厘米内,每秒钟还会有大约十对离子不断产生。他们用铁和铅把验电器完全屏蔽起来,离子的产生几

乎可减少十分之三。他们在论文中提出设想,也许有某种贯穿力极强,类似于γ射线的辐射从外面射进验电器,从而激发出二次放射性。莱特、沃尔夫等物理学家先后采用各种方法进行了试验。人们发现,这种源的放射性与当时人们比较熟悉的放射性相比具有更大的穿透本领,因此人们提出这种放射性可能来自地球之外——这就是宇宙射线最初的迹象。

奥地利物理学家赫斯是一位气球飞行的业余爱好者。他设计了一套装置,将密闭的电离室吊在气球下,电离室的壁厚足以抗一个大气压的压差。他乘坐气球,将高压电离室带到高空,静电计的指示经过温度补偿直接进行记录。他一共制作了十只侦察气球,每只都装载有2~3台能同时工作的电离室。

1911年,第一只气球升至1070米高,在那一高度以下,辐射与海平面差不多。翌年,他乘坐的气球升空达5350米。他发现离开地面700米时,电离度有些下降(地面放射性造成的背景减少所致),800米以上似乎略有增加,而后随着气球的上升,电离持续增加。在1400米~2500米之间显然超过海平面的值。在海拔5000米的高空,辐射强度竟为地面的9倍。由于白天和夜间测量结果相同,因此赫斯断定这种射线不是来源于太阳的照射,而是宇宙空间。

赫斯认为应该提出一种新的假说:“这种迄今为止尚不为人知的东西主要在高空发现……它可能是来自太空的穿透辐射。”1912年赫斯在《物理学杂志》发表题为“在7个自由气球飞行中的贯穿辐射”的论文。

1914年,德国物理学家柯尔霍斯特将气球升至9300米,游离电流竟比海平面大50倍,确证了赫斯的判断。

赫斯的发现引起了人们的极大兴趣,从那时开始,科学界对宇宙射线的各种效应和起源问题进行了广泛的研究。最初,这种辐射被称为“赫斯辐射”,后来被正式命名为“宇宙射线”。当时,许多物理学家怀疑赫斯的测量,并认为这种大气电离作用不是来自太空,而是起因于地球物理现象,例如组成地壳的某种物质发出的放射性。现在认为,宇宙线是来自宇宙空间的高能粒子流的总称。

在现代物理学发展史中,宇宙射线的研究占有重要的地位,许多新的粒子都是首先在宇宙射线中发现的。近年来宇宙射线研究取得了很大成就,人们越来越认识到宇宙线和粒子物理、天体物理密不可分,宇宙射线研究已经成为探索宇宙起源、发展历史、天体演化、空间环境等科学之谜的极为重要的途径。随着科技的发展,宇宙射线研究的手段越来越先进,范围越来越广,期待人类能尽早揭开宇宙射线的神秘面纱。

§ 主要构成

羊八井

初级宇宙线主要由各种原子核以及电子﹑中微子﹑X射线和γ射线光子构成。

原子核

大部分(约87%)是氢原子核──质子﹐约12%是氦原子核──α粒子﹐少量锂﹑铍﹑硼和碳﹑氮﹑氧的原子核﹐还有极少量的重元素原子核。对于平均动能为每核子数百兆电子伏的能区﹐初级宇宙线原子核相对丰度分布

如果采用每核子电子伏作能量单位﹐除重元素外﹐各种宇宙线原子核有类似的能量分布。

电子

1961年直接观测到初级宇宙线中的电子。电子的流强约为质子流强的1%。测得的初级电子能谱形状见图2。能量高于10电子伏的初级电子成分中,正电子仅占10%左右。

X射线和γ射线

1962年开始观测到非太阳起源的宇宙X射线,宇宙γ射线则迟至七十年代才观测到,在10~10电子伏能区,各向同性的X和γ射线背景能谱可以近似地用一个幂律谱表示。

§ 相关分析

观测站

传播

宇宙线的荷电粒子传播时受到星际磁场和行星际磁场的影响。

各向同性 宇宙线荷电粒子在银河系空间传播时,星际磁场使粒子运动路径弯曲,而沿著一条螺旋线运动,它们到达地球时的方向已经不是宇宙线源的方向了。初级宇宙线荷电粒子是各向同性地从各个方向射到地球的。能量超过10电子伏的极高能宇宙线粒子,在银河系磁场中运动路径的曲率半径,超过银盘的厚度﹐银河系磁场对其运动的影响很小。但是,观测超过10电子伏的宇宙线入射方向,没有发现明显的方向性。

太阳调制

太阳风所携带的太阳磁场,在行星际空间造成高速运动的不规则磁场。由于受到太阳风磁场的散射,进入太阳系的较低能量宇宙线原子核数目减少,在太阳活动期,太阳风速度较高,对宇宙线强度的调制作用增大,使到达地球的宇宙线强度减小。能量低于每核子2×10电子伏的宇宙线的流强,随著太阳活动强弱有以11年为周期的变化。

来源

银河系内恒星所能发射的粒子,只占银河宇宙线中的一小部分,银河宇宙线必然来源于比普通恒星活动激烈得多的爆发过程。一般认为,大多数宇宙线荷电粒子来源于超新星爆发,以及爆发后形成的超新星遗迹。银河系超新星爆发的平均输出功率,可以维持银河宇宙线。脉冲星也可能是高能宇宙线粒子的一个重要来源。未发现能量高于10电子伏的极高宇宙线有明显的方向性,这表明它们必然来源于银河系外。初级宇宙线能谱在10~10电子伏处变陡,也表明能量高于10电子伏的粒子主要来源于银河系外。河外星系的平均空间密度很低,故河外区域一定存在比银河系强大得多的宇宙线粒子源。能量高于10电子伏的质子,因与微波背景光子作用产生电子对而损失能量,故在10电子伏以上的宇宙线能谱必然变陡。但是,这种现象并没有观测到。因此,极高能量宇宙线粒子的来源和传播问题仍然很不清楚。

§ 科学研究

宇宙线

绘制出天空中的宇宙线分布图,发现宇宙线分布是各向异性的和宇宙线的运动规律。

在出版的《科学》杂志的2006年10月20日刊上,依据在中国西藏羊八井宇宙射线观测站的“西藏大气簇射探测器阵列”所获得的、积累近九年之久的近四百亿观测事例的实验数据的系统分析,中国和日本两国物理学家合作发表了有关高能宇宙线各向异性以及宇宙线等离子体与星际间气体物质和恒星共同围绕银河系中心旋转的最新结果,这些实验观测的前沿进展被审稿人誉为宇宙线研究领域中“里程碑”式的重要成就。

银河系由几千亿颗恒星因引力束缚而组成,在星际间弥漫着气体物质和强度为几微高斯到几十微高斯的磁场。此外,在浩瀚的星际空间中还穿梭往来着来自各个方向的稀疏而高能粒子,即通常所谓的宇宙射线。宇宙射线的主要成份是以接近光速运动的质子、原子核和电子,它们被银河系的磁场束缚,仅有很小的机会逃逸出银河系。宇宙线粒子轰击原子核和尘埃颗粒而产生伽马射线辐射。探测研究宇宙线,包括它们的成份、能量、与方向相关的强度以及各种分布等,不但为我们提供了丰富的信息来了解宇宙线的起源、加速和传播过程,而且也有助于人类不断深入了解银河系的大尺度磁场结构。

为探索宇宙射线的奥秘,中国科学家在半个世纪以来付出了长期艰苦的不懈努力,并在上个世纪九十年代初在中国西藏自治区拉萨市西北约一百公里处的羊八井建成了国际上驰名的宇宙射线观测站(东经90.5度,北纬30.1度, 海拔4300米)。现在羊八井宇宙射线观测站配备有中国与日本合作的西藏大气簇射探测器阵列(Tibet Air Shower Array)的实验装置和中国与意大利合作的羊八井天体物理辐射地基观测装置(Astrophysical Radiation with Ground-based Observatory at YangBaJing,简称YBJ―ARGO)。西藏大气簇射实验阵列已经建成运行了16年,在高能宇宙射线观测实验研究中取得了独特而出色的研究成果;自2000年以来,ARGO-YBJ实验装备也已经逐步建成,它的顺利运行将更进一步提高羊八井宇宙射线实验的观测能力和范围。

根据《科学》杂志最新发表的西藏大气簇射实验结果,高能(介于万亿至数百万亿电子伏特能量区间,作为对比,电子在五号电池的正负极间加速获得的能量为一点五电子伏特)宇宙射线的流强在不同的方向上会有‘微小’的差别。为了理解这一最新的实验结果,我们可以想象一下地球表面上的大气。大气层基本上随地球的旋转而转动,并会由于太阳照射而造成温度和压力的差别从而使空气流动而形成风,迎着风的方向,空气流入量大,而在相反的方向上空气流入量则小。羊八井的实验结果同样表明,在太阳系附近观测到的宇宙射线的流强也有和“风”相似的地方,即有的方向上宇宙射线稍强些,有的方向上宇宙射线则稍弱些。带电宇宙射线流量的不均匀性很可能反映了银河磁场的某种大尺度结构。此外,我们还发现了新的宇宙射线“风”源,其中除了高能带电粒子的贡献之外,还应当有中性伽马射线的贡献,这些现象有可能暗示在这个方向有离太阳系不太远(比如几百光年;一光年为光行走一年的距离)的宇宙射线的加速源。

实验结果还表明,作为整体的宇宙射线等离子体,在太阳系的附近是和太阳系一样围绕银河系的中心旋转的,这就如同大气层会随着地球旋转一样。我们由此推测,在整个银河系里,宇宙射线等离子体都和恒星与气体物质一样环绕银河系的中心旋转。通过对银河系中性氢原子21厘米谱线的观测分析和模型研究,人们已经认识到在银河系不同半径处的物质旋转角速度是不一样的,即小半径处转得快,大半径处转得慢。结合我们的观测结果,我们可以经验性地推测宇宙射线等离子体在银河系不同半径处与物质共转因而具有不同的角速度。这里,银河系磁场是连接星际间物质和宇宙线等离子体的关键“纽带”。这些实验观测结果为研究宇宙射线起源、加速、和传播等问题提供了宝贵的实测信息,并为银河系大尺度磁流体密度波和同步辐射侦测手段的进一步研究提供了重要的实验依据。

这些实验观测研究成果的取得,应该归功于国家多年来对基础科学研究的重视和不断提升的支持,得益于中国改革开放、对外合作、和迅速发展的整体经济形势,归功于中国科技部,国家自然科学基金委和中国科学院的明智决策和部署,归功于西藏自治区政府的大力支持和配合,归功于中日双方全体研究人员的持之以恒的努力、团结一致的精神和认真严谨的科学态度,归功于长期坚守在羊八井观测站的最可敬的技术工人。[1]

§ 相关影响

宇宙线

据宇航局太空网报道,宇宙射线就像绵绵细雨一样倾泻在地球上。虽然我们不大关注这些高能粒子,但是,它们可能对地球上的生命进化起着一定作用。

虽然化石记录中的几次生物大灭绝可能与小行星撞击或大规模火山爆发有关,但这些古代生物大灭绝原因可能有很多,这至今是人们讨论的话题。伊利诺斯大学的布里恩·菲尔兹说:“可能附近发生的天文事件导致地球承受的辐射急剧增加。”

一颗30光年远的超新星爆炸可能会造成我们地球的辐射量激增,可能会直接或者间接导致大量物种灭绝。现在一些科学家正在寻找这类宇宙行为的可能证据。菲尔兹说:“只发现死去的动物并不能证明邻近超新星。”

宇宙射线主要是来自超新星爆炸产生的高能质子。我们无法准确地跟踪它找到它的源头,因为它的轨迹被磁场弯曲了。事实上,一种典型的宇宙射线会在星系的磁场内弹跳数百万年,最后才会撞上某个天体,比如地球。菲尔兹说:“地球大气上层每平方厘米每秒遭受数条宇宙射线轰击,永远如此。”这些原始的宇宙射线永远不会到达我们地面,而是与上层大气中的原子相撞,形成能量较低的“二级”粒子。

次生效应

在海平面上,大多数二级宇宙射线是高穿透力的介子。每分钟约有1万介子穿过人们的身体。一些介子会电离经过我们肉体的分子,有时会导致可能有害的基因突变。现在,人体每年受到的宇宙射线的幅射强度相当于接受10次X光胸透。但是,我们不应该为此担忧,因为它只是人类承受的自然背景辐射中的一部分,人类的祖先世代承受。

相反,宇宙射线引起的基因突变有时可能是有好处的。波兰什切青大学的弗朗哥·费拉里说:“显然,从某些方面而言,宇宙射线形成了地球上有机体的进化。”在最新发行的《天体生物学》杂志上,费拉里和什切青大学的埃瓦·苏泽斯基维兹对我们所了解的宇宙射线进行了评估,他们争辩说,这些粒子现在的生物关联不见得能代表它们的过去。他们写道:“地球早期的有机体的DNA不稳定,可能很容易在外界作用下变异,或许比现在的细菌更易变异,这是非常有可能的。”

宇宙射线风暴

很久以前不光生物容易变异,宇宙射线也可能更为强烈,影响着地球的大气和下面的生命。一项有争议的理论认为,宇宙射线能促进云的产生。天空云彩越多,把反射回太空的阳光便越多,让地球冷却,从而引起整个生态系统的改变。

另一项关于宇宙射线的理论几乎与之相反——宇宙射线剥离了人类的可起保护作用的臭氧层,在更多太阳紫外辐射之下地球会枯萎。过量的紫外线形成不利于生命的环境。臭氧损耗还可能因邻近的伽马射线爆发而加剧。但是,菲尔兹表示,这种射线的闪现只持续1秒,几年之后臭氧就会恢复。相比之下,来自超新星的宇宙射线会轰击地球至少1000年。他说:“伽马射线爆发可能只能影响一个有机体,但是宇宙线会影响很多代人。”

侥幸避过

要想弄清楚生物大灭绝事件是否由宇宙射线引起,科学家需要研究在附近的超新星上形成然后在爆炸冲击波的作用下落在我们地球上的放射性同位素。

1999年,慕尼黑工业大学的研究人员从深海的岩石样本中发现了铁60。这种极其罕见的同位素铁是由超新星爆炸形成的。它也具有放射性,不稳定,半衰期为150万年,因此,它一定来自一颗很新的超新星。根据铁60的位置和浓度,这组德国科学家后来计算出了这个假定的超新星于280万年前在100光年之外爆炸。

菲尔兹相信,就造成生物大灭绝而言这个距离可能太远了。他说:“我称它为侥幸避过。”该超新星的宇宙线可能对气候产生了影响,但是,要造成重大生物损伤,超新星只有在距离地球约30光年之内爆炸才有可能。

虽然就星系标准而言30光年微不足道,但是,菲尔兹认为,在地球45亿年的历史中遭受超新星致命辐射10多次是可能的。但是,邻近的超新星不是增大宇宙线强度的唯一方式。费拉里称,因为我们的太阳围绕银河中心做轨道运动,它有规律地经过银河的螺旋形臂状物的一只,在这里宇宙光辐射高于平均水平。有研究人员猜测,每次经过螺旋形臂状物都会造成地球上的冰河时代,因为宇宙射线促使云的形成。

科学家梅洛特和他的同事也发现了太阳在银河平面上下移动和化石生态多样性的6300万年的周期之间存在可能联系。这种假设是太阳系每次偏向银河一侧最远时遭受的宇宙射线较多。但是,现在,梅洛特认为,这种移动可能只扮演一个小角色,因为最新证据显示大陆上升和可观测的生物多样性周期之间存在联系。要想明晰宇宙光与生物大灭绝事件之间的关系还需要进行更多研究。

梅洛特表示,寻找附近超新星的其他放射性同位素证据的研究仍在继续,他的研究小组正在开发宇宙射线轰击模拟,希望看到生物大毁灭的任何可证实模式是否存在。他说:“地面的全面影响这个问题至今还无人研究过。” [2]

§ 历史记录

贝克勒耳1896年发现放射性后,许多人认为大气中的电流(地球大气层的电离)仅来自于土中放射性物质或产生出的放射性气体(氡气的同位素)的辐射。

1900至1910年,十年内逐增高度的电离率测量显示出一个能够通过空气对电离辐射的吸收解释的降值。其后,赫斯于1912年利用一个热气球,带着三台静电计,登上了5300米的高空。他探测到电离率增长到大约地面率的四倍。他得出的结论是“我的观察结果最好的解释是设想一种高穿透力的射线从上部进入大气层。”赫斯因为这次后人命名为“宇宙线”(cosmic rays)的发现于1936年获得诺贝尔物理学奖。

随便看

 

百科全书收录594082条中文百科知识,基本涵盖了大多数领域的百科知识,是一部内容开放、自由的电子版百科全书。

 

Copyright © 2004-2023 Cnenc.net All Rights Reserved
更新时间:2024/12/20 5:31:55