词条 | 开立方 |
释义 | 求一个数的立方根的运算法,叫做开立方。最早在我国的九章算术中有对开立方的记载。 笔算开立方的方法方法一1.将被开立方数的整数部分从个位起向左每三位分为一组; 2.根据最左边一组,求得立方根的最高位数; 3.用第一组数减去立方根最高位数的立方,在其右边写上第二组数; 4.用求得的最高位数的平方的300倍试除上述余数,得出试商;并把求得的最高位数的平方的300倍与试商的积、求得的最高位数的30倍与试商的平方的积和试商的立方写在竖式左边,观察其和是否大于余数,若大于,就减小试商再试,若不大于,试商就是立方根的第二位数; 5.用同样方法继续进行下去。 方法二第1、2步同上。 第三步,商完后,落下余数和后面紧跟着的三位,如果后面没有就把余数后面添上三个0; 第四步,将要试商的数代入式子“已商数×要试商数×(10×已商数+要试商数)×30+要商数的立方”,最接近但不超过第三步得到的数者,即为这一位要商的数。 然后重复第3、4步,直到除尽。 开方算法的历史记载九章算术《九章算术》中讲了开平方、开立方的方法,而且计算步骤和现在的基本一样.所不同的是古代用筹算进行演算,现以少广章第12题为例,说明古代开平方演算的步骤,“今有积五万五千二百二十五步.问为方几何.”“答曰:二百三十五步.”这里所说的步是我国古代的长度单位。 开立方原文开立方 〔立方适等,求其一面也。〕 术曰:置积为实。借一算,步之,超二等。 〔言千之面十,言百万之面百。〕 议所得,以再乘所借一算为法,而除之。 〔再乘者,亦求为方幂。以上议命而除之,则立方等也。〕 除已,三之为定法。 〔为当复除,故豫张三面,以定方幂为定法也。〕 复除,折而下。 〔复除者,三面方幂以皆自乘之数,须得折、议,定其厚薄尔。开平幂者, 方百之面十;开立幂者,方千之面十。据定法已有成方之幂,故复除当以千为百, 折下一等也。〕 以三乘所得数,置中行。 〔设三廉之定长。〕 复借一算,置下行。 〔欲以为隅方。立方等未有定数,且置一算定其位。〕 步之,中超一,下超二等。 〔上方法,长自乘而一折,中廉法,但有长,故降一等;下隅法,无面长, 故又降一等也。〕 复置议,以一乘中, 〔为三廉备幂也。〕 再乘下, 〔令隅自乘,为方幂也。〕 皆副以加定法。以定法除。 〔三面、三廉、一隅皆已有幂,以上议命之而除,去三幂之厚也。〕 除已,倍下,并中,从定法。 〔凡再以中、三以下,加定法者,三廉各当以两面之幂连于两方之面,一隅 连于三廉之端,以待复除也。言不尽意,解此要当以棋,乃得明耳。〕 复除,折下如前。开之不尽者,亦为不可开。 〔术亦有以定法命分者,不如故幂开方,以微数为分也。〕 手算开根号原理方法1、数m开n次方,n位一节为一根,前根均作a, a后需求的根均作b;前根a的位数不断增长,后根b永远作一位根视;直至开尽或开至所需要的位数。 2、首位a根用1~9内n方诀直接确定,【随后就无a根系列的事了;或用双根或多位根作a;即将约小于被开数的乘方数的幂底整数值作为a根,再求b=x】b根用“标准固律方程式”或“简易求b方程式”求。 原理正向乘方式:m=(a+b)n=an+bn+s【s根据n的数字而定值,n为上标,文本网显示不出来,希理解。因没有设置“上下标功能”或没有安装“公式编辑器”所致,特说明。】 逆向开方时:m-an=bn+s=xn+s;m-an-bn=s; 如 二次方的s=2ab; 三次方的s=3abD【D=a+b】 五次方的s=5abD(D2-ab)【D=a+b;前面的2为上标,特说明。】 其它任意次方的固律参数照推【本文不介绍,望理解】。 即:bn=m-an-s=c-s【c为可知数,s、bn为潜态可知数】正规解法与过程可看原正规文:《关于“连续统假设”的“算术公理的无矛盾性”证明》中的lan3《高方直开法与直开式的方程解》篇。 例如:(a+b)3=a3+b3+3a2b+3ab2=a3+b3+3ab(a+b)= m=a3+b3+3abD【D=a+b】 所以:(a+b)3=m=a3+b3+3abD【D=a+b】〖注:3为上标。特说明。〗 其他任意高次方的转换方式理同最简单、用式最短的三次方原理实用式记法。 但m开3次方时,这个原公式帮不上忙了,即必须进行转换。 因此成:(a+b)3=a3+b3+3a2b+3ab2=a3+b3+3ab(a+b)=m= a3+b3+3abD【D=a+b】, 而后面转换成为m=a3+b3+3abD【D=a+b】,则m开方时就有同二次方一样的公式[求根式]可用了,在任意高次方中理同二次方无异。 也即在实际开高次方或无穷大指数〖上标数〗时,或高次方程的运算过程中【注意:求b=x根就是科学上的各种一元n次方的标准方程式】,《结构数学》都将现代数学式中的式子按照“结构原理”进行了处理与转换,使它都按照统一规律形式的规律型公式去表达,目的:便于快速简洁的进行运算,并符合“算术公里的无矛盾性标准”。 注意m=(a+b)2=a2+b2+2ab=aa+bb+2ab;这个2ab就是二次方的S;所以二次方都会解! 而: m=(a+b)3=a3+b3+3a2b+3ab2=aaa+bbb+3aab+3abb=a3+b3+3ab(a+b)= a3+b3+3abD【D=a+b】;这个3abD就是三次方的S;懂此者就如同二次方一样都会解! 又如,m=(a+b)5=a5+b5+5a4b+10a3b2+10a2b3+5ab4= a5+b5+5abD(D2-ab) 五次方的S=5abD(D2-ab) =5a4b+10a3b2+10a2b3+5ab4。 而这些3ab(a+b)=3abD=S;5abD(D2-ab) =5a4b+10a3b2+10a2b3+5ab4=S,这个S就是高次方程解的奥秘。 在无穷大次方中,你知道了S,那么高次方的解同二次低方解的S=2ab的方式、方法没有任何区别的简单的不值一文钱了,也没有任何解的障碍或称为难题的必要了。公式X_(n+1)={X_n+[A/(X^(k-1)-X_n]1/k}公式X_(n+1)={X_n+[A/(X^(k-1)-X_n]1/k}"_"表示下角标,“^”表示上角标。例如,X^2,表示x的平方;X_1表示第一个X。 例如,A=5,k=3. 公式:X(n+1)=Xn+(A/Xn^2-Xn)1/3 5介于1^3至2^3之间(1的3次方=1,2的3次方=8) ? X_0可以取1.1,1.2,1.3,1.4,1.5,1.6,1.7,1.8,1.9,2.0都可以。例如我们取2.0.按照公式: 第一步:X_1={2.0+[5/(2.0^2-2.0]1/3=1.7.}。输入值大于输出值,负反馈;? 即5/2×2=1.25,1.25-2=-0.75,0.75×1/3=0.25, 2-0.25=1.75,取2位数值,即1.7。 第二步:X_2={1.7+[5/(1.7^2-1.7]1/3=1.71}.。输入值小于输出值,正反馈; 即5/1.7×1.7=1.73010,1.73-1.7=0.03,0.03×1/3=0.01, 1.7+0.01=1.71。取3位数,比前面多取一位数。 第三步:X_3={1.71+[5/(1.71^2-1.71]1/3=1.709}。输入值大于输出值,负反馈 第四步:X_4={1.709+[5/(1.709^2-1.709]1/3=1.7099}.输入值小于输出值,正反馈; 这种方法可以自动调节,第一步与第三步取值偏大,但是计算出来以后输出值会自动转小;第二步,第四步输入值偏小,输出值自动转大。X_4=1.7099. 当然也可以取1.1,1.2,1.3,。。。1.8,1.9中的任何一个。 开平方公式 X(n + 1) = Xn + (A / Xn ? Xn)1 / 2.。(n,n+1与是下角标) 例如,A=5: 5介于2的平方至3的平方;之间。我们取初始值2.1,2.2,2.3,2.4,2.5,2.6,2.7,2.8,2.9都可以,我们最好取 中间值2.5。 第一步:2.5+(5/2.5-2.5)1/2=2.2; 即5/2.5=2,2-2.5=-0.5,-0.5×1/2=-0.25,2.5+(-0.25)=2.25,取2位数2.2。 第二步:2.2+(5/2.2-2.2)1/2=2.23; 即5/2.2=2.27272,2.27272-2.2=-0.07272,-0.07272×1/2=-0.03636,2.2+0.03636=2.23。取3位数2.23。 第三步:2.23+(5/2.23-2.23)1/2=2.236。 即5/2.23=2.2421525,,2.2421525-2.23=0.0121525,,0.0121525×1/2=0.00607,,2.23+0.006=2.236.,取4位数。 每一步多取一位数。这个方法又叫反馈开方,即使你输入一个错误的数值,也没有关系,输出值会自动调节,接近准确值。 |
随便看 |
百科全书收录4421916条中文百科知识,基本涵盖了大多数领域的百科知识,是一部内容开放、自由的电子版百科全书。