词条 | 卡尔松不等式 |
释义 | 内容表述卡尔松不等式(Carlson),卡尔松不等式往往也被称为矩阵长方形不等式 m×n的非负实数矩阵中,n列每列元素之和的几何平均值不小于矩阵中m行每行元素的几何平均值之和。 符号语言即: (x1+y1+…)(x2+y2+…)…(xn+yn+…)≥[(Πx)^(1/n)+(Πy)^(1/n)+…]^n (*) 注:“Πx”表示x1,x2,…,xn的乘积,x,y,…表示各行的名称,共m个。 数学证明证明 记A1=x1+y1+…,A2=x2+y2+…,…. 由平均值不等式得 (1/n)(x1/A1+x2/A2+…+xn/An)≥[x1*x2*…*xn/(A1*A2*…*An)]^(1/n) =[(Πx)/(A1*A2*…*An)]^(1/n) (1/n)(y1/A1+y2/A2+…+yn/An)≥[y1*y2*…*yn/(A1*A2*…*An)]^(1/n) =[(Πy)/(A1*A2*…*An)]^(1/n), …… 上述m个不等式叠加得 1≥[(Πx)/(A1*A2*…*An)]^(1/n)+[(Πy)/(A1*A2*…*An)]^(1/n)+… 即(A1*A2*…*An)^(1/n)≥(Πx)^(1/n)+(Πy)^(1/n)+… 即 A1*A2*…*An≥[(Πx)^(1/n)+(Πy)^(1/n)+…]^n 即(x1+y1+…)(x2+y2+…)…(xn+yn+…)≥[(Πx)^(1/n)+(Πy)^(1/n)+…]^n, 因此,不等式(1')成立. 特别地,当n=2时,不等式(*)即为柯西不等式. ______________更清楚点______________ |
随便看 |
百科全书收录4421916条中文百科知识,基本涵盖了大多数领域的百科知识,是一部内容开放、自由的电子版百科全书。