词条 | 矩阵位移法 |
释义 | 在结构力学的计算中,通过采用对结点位移作为基本未知量,进而通过矩阵的形式堆各基本参数进行组织,编排,求出未知量的方法,称为矩阵位移法。 矩阵位移法的特点矩阵数学表达力强矩阵数学表达力强,运算简洁方便并且适于计算机组织运算,是用计算机进行结构数值分析的最强有力的数学工具。 矩阵位移法与结构力学的力法和位移法相对应,也就是结构的矩阵分析方法。 矩阵位移法方便编制程序矩阵位移法便于编制程序,因而在工程界得到广泛应用。 矩阵位移法并不因采用矩阵数学的描述手段,而改变位移法的基本原理。它与位移法的区别仅仅在于表达形式不同。 矩阵位移法的基本原理按位移法的基本原理运用矩阵计算内力和位移的方法。是结构矩阵分析方法中的一种,其基本未知数是结点位移,由于矩阵位移法较矩阵力法更适宜编制通用的计算程序,因而得到了更为广泛的应用。 结构矩阵分析方法首先把结构离散成有限数目的单元,然后再合成为原结构,因而也属于有限元法。矩阵位移法常用的单元形式为一直杆。对于曲杆,如拱结构,虽然也可取曲杆作为单元,但单元分析较烦,为简化起见,可将它化成折线来处理,每一直线段作为一单元。当单元承受非结点荷载时,可 用等效结点荷载代替。其方法是将单元间的分界结点作为固端求出固端反力,然后反其向作用在结点上。 根据结构变形后要满足几何方面的相容条件(变形条件),结点位移矩u与杆端位移矩之间存在关系式 (1)式a表示u的变换矩阵。 杆端位移矩与杆端力矩s之间的关系式为 s=k (2) 式km称为未装配结构的刚度矩阵,它等于各单元刚度矩k(i) 作为子块的对角矩阵。 其元素可直接按结点单位位移引起的反力而求得。由于单元坐标并不一定是整体结构坐标,因而求得的单元刚度矩k(i) 需通过坐标变换转化为整体坐标下的单元刚度矩阵。 根据结点作用力与汇交于该结点的杆端力保持平衡关系,可以得到杆端s与结点作用的关系式为=ds (3)式d为杆端力矩s 对结点作用力矩的变换矩阵。 根据虚功原理,可daT。 根据上面三式,可以得到=K (4) KaTm (5) 式(5)K称为已装配结构的刚度矩阵或整体刚度矩阵。 通过式(5)获得总刚度矩阵K的方法称为刚度法。因为位移变换矩a的阶数相当高,运算中须占大量的存贮单元,因而在组合整体刚度矩阵时,常采用直接把单元刚度矩阵的元素输送到K中的直接刚度法,该方法是将各单元中相同脚标的元素直接相加而组成整体刚度矩阵。在单元刚度矩阵中,对于近端结点刚度矩阵系数kjj,由于汇集于该结点j的所有单元都可作出贡献,因而在整体刚度矩阵中可有若干项相加,为汇集于j结点的所有单元。由于它不必通过式(5)进行计算,运算方便,因此其应用比刚度法更为广泛。 由于支座约束方向的结点位移通常为零或为已知值,因而可将全部结点位u分为两部分,一部分是不受支座约束的位ur,另一为沿支座约束方向的结点位uR。由此(4)式变成展开上式得 (7) (8) uR=0时(7)式变成: r=Kur (7′) 式中Kr为已装配结构相应不受支座约束的位移的刚度矩阵,实际上即为一般位移法基本方程中的系数矩阵K,该矩阵亦可直接按柔度矩阵求逆而得到。r即为一般位移法基本方程的自由项矩r(一般位移法中,Kr在方程同一边,因rR差一符号)。因而(7′)式即为位移法基本方程的矩阵表达式。 根据(7)或(7′)式即可求ur。再由(1)、(2)式即可求得杆端s,实际杆端sa应再叠加单元上非结点荷载引起的固端sf。第i单元的实际杆端力应为 sa(i)k(i(i)sf(i)(9) 矩阵位移法计算杆端力的步骤矩阵位移法计算杆端力的步骤为: ①划分单元,求出等效结点荷载; ②求单元刚度矩k(i),并转换为整体坐标的单元刚度矩阵; ③由(5)式或直接刚度法求出整体刚度矩阵K; ④求出Krr; ⑤由(7′)式求出结点位ur,再由(1)、(2)式求出杆端s,实际杆端力应再叠sf, 即由(9)式确定。 |
随便看 |
百科全书收录4421916条中文百科知识,基本涵盖了大多数领域的百科知识,是一部内容开放、自由的电子版百科全书。