请输入您要查询的百科知识:

 

词条 结构优化设计
释义

结构优化设计

科技名词定义中文名称:结构优化设计

英文名称:optimized design of structure

定义:工程结构在满足约束条件下按预定目标求出最优方案的设计方法。

应用学科:水利科技(一级学科);工程力学、工程结构、建筑材料(二级学科);工程结构(水利)(三级学科)

以上内容由全国科学技术名词审定委员会审定公布

基本概念

传统的结构优化设计,实际上指的是结构分析,其过程大致是假设-分析-校核-重新设计。重新设计的目的也是要选择一个合理的方案,但它只属分析的范畴;且只能凭设计者的经验作很少几次重复以通过“校核”为满足。结构优化指的是结构综合,其过程大致可归纳为:假定-分析-搜索-最优设计四个阶段。其中的搜索过程是修改并优化的过程。它首先判断设计方案是否达到最优(包括满足各种给定的条件),如若不是,则按某种规则进行修改,以求逐步达到预定的最优指标。

1.结构优化设计的数学模型

结构优化设计可定义为:对于已知的给定参数,求出满足全部约束条件并使目标函数取最小值的设计变量的解。

2.设计变量

设计变量指在设计过程中所要选择的描述结构特性的量,它的数值是可变的。设计变量可以是各个构件的截面尺寸、面积、惯性矩等设计截面的几何参数,也可以是柱的高度、梁的间距、拱的矢高和节点坐标等结构总体的几何参数。设计变量通常有连续设计变量和离散设计变量两种类型。

(1)连续设计变量。这类变量在优化过程中是连续变化的,如拱的矢高和节点坐标等。

(2)离散设计变量。这类变量在优化中是跳跃式变化的,如可供选用的型钢的截面面积和钢筋的直径都是不连续的。

3.目标函数

目标函数是用来衡量设计好坏的指标。采用何种指标来反映设计好坏与结构本身的技术经济特性有关。通常采用的目标函数有:结构重量、结构体积、结构造价三种。

4.约束条件

结构优化的约束条件一般有几何约束条件和性态约束条件两种。

(1)几何约束条件。即在几何尺寸方面对设计变量加以限制。如工字型截面的腹板和翼缘的最小厚度限制。

(2)性态约束条件。即对结构的工作性态所施加的一些限制。如构件的强度、稳定约束以及结构整体的刚度和自振频率等方面的限制。

数学模型

轻钢结构设计的最终目的是要给出一个经济合理的设计方案。优化设计方法,能较好地适应这方面的要求。轻钢结构采用优化设计,对于减轻结构重量、降低用钢量和结构造价有着明显的意义。目前国内对轻钢结构的优化设计已进行了一些研究和应用,编制了相应的计算程序,利用计算机实现了对截面的自动优选以求得重量最小、用料最省或造价最低的设计方案。这对于提高轻钢结构的设计质量,加快设计进程都起了一定的作用。下面针对轻钢结构建立其优化设计的数学模型。

1.设计变量

轻钢结构的主要几何参数如跨度、檐口高、屋面坡度、纵向柱间距等通常由业主或建筑师确定。可供优化的变量主要是截面参数。具体说,就是各工字钢截面的翼缘宽、厚,腹板的高、厚等。钢板的厚度是离散变量,而腹板和翼缘的高(宽)一般也是从一系列有规律的数中选取,因此轻钢结构的设计变量通常是离散变量。

2.目标函数

结构重量是轻钢结构优化设计的重要指标,且比较容易写成设计变量的函数形式,故轻钢结构通常以用钢量最少为优化目标。

3.约束条件

轻钢结构优化设计必须满足以下约束条件:

(1)强度、稳定约束条件。

轻钢结构构件必须满足强度和稳定要求。

(2)刚度约束条件。

轻钢结构的构件尺寸在优化时,结构的整体刚度必须满足变形控制要求。具体说,就是横梁的最大垂直位移、柱顶的最大水平位移、吊车轨顶处的最大水平位移等必须满足有关规范规定的变形控制值。

(3)截面尺寸约束条件。

轻钢结构截面尺寸的选择必须满足有关规范的构造要求和使用要求,如所有截面的腹板高度必须大于翼缘宽度,所有截面的翼缘厚度必须比腹板厚度大2mm以上等。

(4)结构整体约束条件。

轻钢结构的优化设计必须满足结构整体约束条件,即构件截面尺寸的选择必须要保证梁、柱截面的连续性以及合理性,满足常规的加工和使用要求等。

(5)变量的上、下限约束条件。

方法简介

1.简单解法

当优化问题的变量较少时,可用下列简单解法。

(1)图解法。在设计空间中作出可行域和目标函数等值面,再从图形上找出既在可行域内(或其边界内),又使目标函数值最小的设计点的位置。

(2)解析法。当问题比较简单时,可用解析法求解。

2.准则法

准则法是从工程和力学观点出发,提出结构达到优化设计时应满足的某些准则(如同步失效准则、满应力准则、能量准则等),然后用迭代的方法求出满足这些准则的解。该方法的主要特点是收敛快,重分析次数与设计变量数目无直接关系,计算量不大,但适用有局限性,主要适用于结构布局及几何形状已定的情况。尽管准则法有它的缺点,但从工程应用的角度来看,它比较方便,习惯上易于接受,优点仍是主要的。最简单的准则法有同步失效准则法和满应力准则法。

(1)同步失效准则法。其基本思想可概括为:在荷载作用下,能使所有可能发生的破坏模式同时实现的结构是最优的结构。同步失效准则设计有许多明显的缺点。由于要用解析表达式进行代数运算,同步失效设计只能用来处理非常简单的元件优化;当约束数大于设计变量数时,必须设法确定那些破坏模式应当同时发生才给出最优设计,这通常是一件十分困难的工作;当约束数和设计变量数相等时,并不能保证这样求得的解是最优解。

(2)满应力准则法。该法认为充分发挥材料强度的潜力,可以算是结构优化的一个标志,以杆件满应力作为优化设计的准则。这一方法在杆件系统如桁架的优化设计中用得较多。在此基础上又发展了与射线步结合的齿行法以及框架等复杂结构的满应力设计。

3.数学规划法

将结构优化问题归纳为一个数学规划问题,然后用数学规划法来求解。结构优化中常用的数学规划方法是非线性规划,有时也用线性规划,特殊情况可能用到动态规划、几何规划、整数规划或随机规划等。

(1)线性规划。当目标函数和约束方程都是设计变量的线性函数时,称为线性规划问题。该类问题的解法比较成熟,其中常用的解法是单纯形法。

(2)非线性规划。当目标函数或约束方程为设计变量的非线性函数时,称为非线性规划。结构优化设计多为有约束的非线性规划问题。这类问题较线性规划问题复杂得多,难度较大,目前采用的方法大致有以下几种类型:不作转换但需求导数的分析方法,如梯度投影法、可行方向法等;不作转换也不需求导数的直接搜索方法,如复形法;采用线性规划来逐次逼近,如序列线性规划法;转换为无约束极值问题求解,如罚函数法、乘子法等。

4.混合法

混合法即同时采用准则法和数学规划法。

5.启发式算法

近些年来发展起来了一些启发式算法。这些算法有遗传算法(GA)、神经网络算法、模拟退火算法等。它们在结构优化领域得到了一些应用。如文献[4]将遗传算法用于门式刚架的优化设计。

随便看

 

百科全书收录4421916条中文百科知识,基本涵盖了大多数领域的百科知识,是一部内容开放、自由的电子版百科全书。

 

Copyright © 2004-2023 Cnenc.net All Rights Reserved
更新时间:2024/12/23 17:06:37