词条 | 集合论悖论 |
释义 | 提出1902年,英国数学家罗素提出了这样一个理论:以M表示是其自身成员的集合的集合,N表示不是其自身成员的集合的集合。然后问N是否为它自身的成员?如果N是它自身的成员,则N属于M而不属于N,也就是说N不是它自身的成员;另一方面,如果N不是它自身的成员,则N属于N而不属于M,也就是说N是它自身的成员。无论出现哪一种情况都将导出矛盾的结论,这就是著名的罗素悖论。 1919年罗素给出了上述悖论的通俗形式,即“理发师悖论”:一天,萨维尔村理发师挂出一块招牌:“村里所有不自己理发的男人都由我给他们理发,我也只给这些人理发。”于是有人问他:“您的头发由谁理呢?”理发师顿时哑口无言。 因为,如果他给自己理发,那么他就属于自己给自己理发的那类人。但是,招牌上说明他不给这类人理发,因此他不能自己理。如果由另外一个人给他理发,他就是不给自己理发的人,而招牌上明明说他要给所有不自己理发的男人理发,因此,他应该自己理。由此可见,不管怎样的推论,理发师所说的话总是自相矛盾的。 例证悖论还有很多,这里有这样一个有趣的悖论:有个虔诚的教徒,他在演说中口口声声说上帝是无所不能的,什么事都做得到。一位过路人问了一句话:“上帝能创造一块他自己也举不起来的石头吗?”下面我们来证明上帝不是万能的。(用反证法证明) 证明:假设上帝是万能的,那么上帝能造出一块他自己都举不起来的石头,否则上帝就不是万能的;但是上帝又举不起这块石头,因此上帝不是万能的,这与假设矛盾;所以原假设不成立,即上帝不是万能的。 比如有这样一个悖论:“我正在说的这句话是谎话”公元前四世纪的希腊数学家欧几里德提出的这个悖论,至今还在困扰着数学家和逻辑学家。这就是著名的说慌者悖论。在中国古代《墨经》中,也有一句十分相似的话:“以言为尽悖,悖,说在其言。”意思是:以为所有的话都是错的,这是错的,因为这本身就是一句话。 现状类似的悖论还有很多,这些悖论不断的影响着数学的发展,科学家们为了消除悖论,做了大量的工作,将集合论进行公理化,形成了今天常用的策梅洛—弗兰克尔公理系统。 |
随便看 |
百科全书收录4421916条中文百科知识,基本涵盖了大多数领域的百科知识,是一部内容开放、自由的电子版百科全书。