词条 | 极差 |
释义 | 定义极差是指总体各单位的标志值中,最大标志值与最小标志值之差。它是标志值变动的最大范围。极差也称为全距或范围误差,它是测定标志变动的最简单的指标。换句话说,也就是指一组数据中的最大数据与最小数据的差叫做这组数据的极差。 极差英文为range ,简写为R,表示为:R=Xmax-Xmin。移动极差(Moving Range)是其中的一种。 计算公式全距=最大标志值—最小标志值 R=Xmax-Xmin (其中,Xmax为最大值,Xmin为最小值) 例如 :12 12 13 14 16 21 这组数的极差就是 :21-12=9 例如,“早穿皮袄午穿纱”,这句话说明的气温特征数就是极差。 方差计算公式:s^2=(1/n)*[(x1-x0)^2 + (x2-x0)^2 +...+ (xn-x0)^2] (X0即为x的平均值) 移动极差移动极差(Moving Range),是指两个或多个连续样本值中最大值与最小值之差,这种差是按这样方式计算的:每当得到一个额外的数据点时,就在样本中加上这个新的点,同时删除其中时间上“最老的”点,然后计算与这点有关的极差,因此每个极差的计算至少与前一个极差的计算共用一个点的值。一般说来,移动极差用于单值控制图,并且通常用两点(连续的点)来计算移动极差。 用途和意义在统计中常用极差来刻画一组数据的离散程度,以及反映的是变量分布的变异范围和离散幅度,在总体中任何两个单位的标准值之差都不能超过极差。同时,它能体现一组数据波动的范围。极差越大,离散程度越大,反之,离散程度越小。 极差只指明了测定值的最大离散范围,而未能利用全部测量值的信息,不能细致地反映测量值彼此相符合的程度,极差是总体标准偏差的有偏估计值,当乘以校正系数之后,可以作为总体标准偏差的无偏估计值,它的优点是计算简单,含义直观,运用方便,故在数据统计处理中仍有着相当广泛的应用。 但是,它仅仅取决于两个极端值的水平,不能反映其间的变量分布情况,同时易受极端值的影响。 |
随便看 |
百科全书收录4421916条中文百科知识,基本涵盖了大多数领域的百科知识,是一部内容开放、自由的电子版百科全书。