词条 | 化学计量学基础 |
释义 | 《化学计量学基础》内容简介:化学计量学在化学量测中的采样理论与实验设计、化学数据处理、分析信号解析与分辨、化学分类决策与预报等方面,解决了大量传统的化学研究方法难以解决的复杂问题,显示了其强大的生命力,已受到化学尤其是分析化学工作者的极大关注。 图书信息书 名: 化学计量学基础 作 者:梁逸曾 出版社: 华东理工大学出版社 出版时间: 2010年10月1日 ISBN: 9787562828716 开本: 16开 定价: 38.00元 图书目录Chapter 1 Introduction and Necessary Fundamental Knowledge of Mathematics 1.1 Chemometrics: Definition and Its Brief History / 3 1.2 The Relationship between Analytical Chemistry and Chemometrics / 4 1.3 The Relationship between Chemometrics, Chemoinformatics and Bioinformatics / 7 1.4 Necessary Knowledge of Mathematics / 9 1.4.1 Vector and Its Calculation / 10 1.4.2 Matrix and Its Calculation / 19 Chapter 2 Chemical Experiment Design 2.1 Introduction / 39 2.2 Factorial Design and Its Rational Analysis / 41 2.2.1 Computation of Effects Using Sign Tables / 44 2.2.2 Normal Plot of Effects and Residuals / 45 2.3 Fractional Factorial Design / 47 2.4 Orthogonal Design and Orthogonal Array / 52 2.4.1 Definition of Orthogonal Design Table / 53 2.4.2 Orthogonal Arrays and Their Inter-effect Tables / 54 2.4.3 Linear Graphs of Orthogonal Array and Its Applications / 55 2.5 Uniform Experimental Design and Uniform Design Table / 55 2.5.1 Uniform Design Table and Its Construction / 56 2.5.2 Uniformity Criterion and Accessory Tables for Uniform Design / 59 2.5.3 Uniform Design for Pseudo-level / 60 2.5.4 An Example for Optimization of Electropherotic Separation Using Uniform Design / 61 2.6 D-Optimal Experiment Design / 65 2.7 Optimization Based on Simplex and Experiment Design / 68 2.7.1 Constructing an Initial Simplex to Start the Experiment Design / 69 2.7.2 Simplex Searching and Optimization / 70 Chapter 3 Processing of Analytic Signals 3.1 Smoothing Methods of Analytical Signals / 77 3.1.1 Moving-Window Average Smoothing Method / 77 3.1.2 Savitsky-Golay Filter / 77 3.2 Derivative Methods of Analytical Signals / 83 3.2.1 Simple Difference Method / 83 3.2.2 Moving-Window Polynomial Least-Squares Fitting Method / 84 3.3 Background Correction Method of Analytical Signals / 89 3.3.1 Penalized Least Squares Algorithm / 89 3.3.2 Adaptive Iteratively Reweighted Procedure / 90 3.3.3 Some Examples for Correcting the Baseline from Different Instruments / 92 3.4 Transformation Methods of Analytical Signals / 94 3.4.1 Physical Meaning of the Convolution Algorithm / 94 3.4.2 Multichannel Advantage in Spectroscopy and Hadamard Transformation / 96 3.4.3 Fourier Transformation / 99 Appendix 1.A Matlab Program for Smoothing the Analytical Signals / 108 Appendix 2 :A Matlab Program for Demonstration of FT Applied to Smoothing / 112 Chapter 4 Multivariate Calibration and Multivariate Resolution 4.1 Multivariate Calibration Methods for White Analytical Systems / 116 4.1.1 Direct Calibration Methods / 116 4.1.2 Indirect Calibration Methods / 121 4.2 Multivariate Calibration Methods for Grey Analytical Systems / 126 4.2.1 Vectoral Calibration Methods / 127 4.2.2 Matrix Calibration Methods / 127 4.3 Multivariate Resolution Methods for Black Analytical Systems / 129 4.3.1 Self-modeling Curve Resolution Method / 131 4.3.2 Iterative Target Transformation Factor Analysis / 134 4.3.3 Evolving Factor Analysis and Related Methods / 137 4.3.4 Window Factor Analysis / 141 4.3.5 Heuristic Evolving Latent Projections / 145 4.3.6 Subwindow Factor Analysis / 152 4.4 Multivariate Calibration Methods for Generalized Grey Analytical Systems / 154 4.4.1 Principal Component Regression (PCR) / 156 4.4.2 Partial Least Squares (PLS) / 157 4.4.3 Leave-one-out Cross-validation / 159 Chapter 5 Pattern Recognition and Pattern Analysis for Chemical Analytical Data 5.1 Introduction / 169 5.1.1 Chemical Pattern Space / 169 5.1.2 Distance in Pattern Space and Measures of Similarity / 171 5.1.3 Feature Extraction Methods / 173 5.1.4 Pretreatment Methods for Pattern Recognition / 173 5.2 Supervised Pattern Recognition Methods: Discriminant Analysis Methods / 174 5.2.1 Discrimination Method Based on Euclidean Distance / 175 5.2.2 Discrimination Method Based on Mahaianobis Distance / 175 5.2.3 Linear Learning Machine / 176 5.2.4 k-Nearest Neighbors Discrimination Method / 177 5.3 Unsupervised Pattern Recognition Methods: Clustering Analysis Methods / 179 5.3.1 Minimum Spanning Tree Method / 179 5.3.2 k-means Clustering Method / 181 5.4 Visual Dimensional Reduction Based on Latent Projections / 183 5.4.1 Projection Discrimination Method Based on Principal Component Analysis / 183 5.4.2 SMICA Method Based on Principal Component Analysis / 186 5.4.3 Classification Method Based on Partial Least Squares / 193 |
随便看 |
百科全书收录4421916条中文百科知识,基本涵盖了大多数领域的百科知识,是一部内容开放、自由的电子版百科全书。