请输入您要查询的百科知识:

 

词条 互质数
释义

概念

定义及定理

【对于两个数来看 】

公因数只有1的两个数,叫做互质数。

【对于多个数来看(教材定义)】

若干个最大公因数只有1的正整数,叫做互质数。

表达及运用注意

(1)这里所说的“两个数”是指除0外的所有自然数。

(2)“公因数只有 1”,不能误说成“没有公因数。”

(3)三个或三个以上自然数互质有两种不同的情况:一种是这些成互质数的自然数是两两互质的。如2、3、5。另一种不是两两互质的。如6、8、9。 两个正整数(N),除了1以外,没有其他公约数时,称这两个数为互质数.互质数的概率是6/π^2

判定互质数的方法汇总

直接分辨

(1)两个不相同质数一定是互质数。例如,2与7、13与19。

(2)相邻的两个自然数是互质数。例如 15与 16。

(3)相邻的两个奇数是互质数。例如 49与 51。

(4)大数是质数的两个数是互质数。例如97与88。

(5)小数是质数,大数不是小数的倍数的两个数是互质数。例如 7和 16。

(6)2和任何奇数是互质数。例如2和87。

(7)1和任何自然数(0除外)都是互质数。

计算判定法

(1)两个数都是合数(两数相差较大),小数所有的质因数,都不是大数的约数,这两个数是互质数。 如357与715,357=3×7×17,而3、7和17都不是715的约数,这两个数为互质数。

(2)两个数都是合数(两数相差较小),这两个数的差的所有质因数都不是小数的约数,这两个数是互质数。如85和78。

85-78=7,7不是78的约数,这两个数是互质数。

(3)两个数都是合数,大数除以小数的余数(不为“0”且大于“ 1”)的所有质因数,都不是小数的约数,这两个数是互质数。如 462与 221

462÷221=2……20,

20=2×2×5。

2、5都不是221的约数,这两个数是互质数。

(4)减除法。如255与182。

255-182=73,观察知 73<182。

182-(73×2)=36,显然 36<73。

73-(36×2)=1,

(255,182)=1。

所以这两个数是互质数。

互质数的应用

互质数是数学十分重要的一门课,在小学数学六年级中会学习,在奥数中也会出现,十分重要!

随便看

 

百科全书收录4421916条中文百科知识,基本涵盖了大多数领域的百科知识,是一部内容开放、自由的电子版百科全书。

 

Copyright © 2004-2023 Cnenc.net All Rights Reserved
更新时间:2024/12/23 15:52:20