词条 | LAMOST望远镜 |
释义 | LAMOST望远镜是大天区面积多目标光纤光谱天文望远镜的简称,即(Large Sky Area Multi-Object Fibre Spectroscopy Telescope)的缩写。是1997年9月国家计划委员会批准的由中国科学院承担的国家重大科学工程项目,国家投资2.35 亿元。LAMOST项目于2001年9月正式开工,于2008年10月落成。 简介大天区面积多目标光纤光谱天文望远镜(LAMOST)是一架视场为5度横卧于南北方向的中星仪式反射施密特望远镜,它的光学系统包括:5.72 米×4.4米的反射施密特改正镜MA(由24块六角形平面子镜拼接而成),6.67米×6.05米的球面主镜MB(由37块球面子镜拼接而成)和焦面三个部分。其中MA在观测天体的过程中随着时间的改变可实时地变化成需要的非球面面形。应用主动光学技术控制反射改正板,使它成为大口径兼大视场光学望远镜的世界之最。由于它的大口径,在曝光1.5小时内可以观测到暗达20.5等的天体。而由于它的大视场,在焦面上可以放置四千根光纤,将遥远天体的光分别传输到多台光谱仪中,同时获得它们的光谱,成为世界上光谱获取率最高的望远镜。它将安放在国家天文台兴隆观测站。项目投资2.35亿元。它将成为我国天文学在大规模光学光谱观测中,在大视场天文学研究上,居于国际领先的地位。 技术成就概况在技术上,LAMOST在其反射施密特改正镜上同时采用了薄镜面主动光学和拼接镜面主动光学技术,以其新颖的构思和巧妙的设计实现了在世界上光学望远镜大视场同时兼备大口径的突破。并行可控式光纤定位技术解决了同时精确定位 4000个观测目标的难题,也是一项国际领先的技术创新。 作用 LAMOST在口径、视场和光纤数目三者结合上超过了国际上目前已经完成或正在进行中的大视场多天体光谱巡天计划,其科学目标集中在河外星系的观测 , 银河系结构和演化,以及多波段目标证认三个方面。它对近千万个星系、类星体等河外天体的光谱观测,将在宇宙学模型、宇宙大尺度结构、星系形成和演化等研究上做出重大贡献。对大量恒星的光谱巡天将在银河系结构与演化及恒星物理的研究上做出重大贡献。结合红外、射电、X射线、伽马射线巡天的大量天体的光谱观测将在各类天体多波段交叉证认上做出重大贡献。 LAMOST 望远镜安放在国家天文台兴隆观测站,作为国家设备,向全国天文界开放,并积极开展国际合作。LAMOST 将使中国天文学在大规模光学光谱观测中, 在大视场天文学研究上,居于国际领先的地位。 特点LAMOST望远镜最突出的特点是大口径(4米)兼大视场(5度),以及4000根光纤组成地超大规模光谱观测系统。与国际上同类型的巡天项目,比如美国斯隆数字巡天计划(SDSS)和澳大利亚英澳天文台2dF巡天相比,LAMOST无论在望远镜口径上还是观测效率上都有极大的飞跃。 子系统LAMOST望远镜由八个子系统组成,分别是光学系统、主动光学和支撑系统、机架和跟踪系统、望远镜控制系统、焦面仪器、圆顶、观测控制和数据处理系统、输入星表和巡天战略。 光学系统由在南端的球面主镜MB、在北端的反射施密特改正镜MA构成,焦面在中间。光轴南高北低,以适应台址纬度,扩大观测天区。球面主镜MB大小为6.5米×6米,由37块1.1米对角径的六角形球面镜拼接而成。反射施密特改正镜MA大小为5.7米×4.4米,由24块对角径1.1米的六角形主动非球面镜拼接而成。球面主镜MB是固定的,对天体的指向跟踪运动完全由MA担任。作为定天镜的MA采用地平式机架,其指向和跟踪由方位和高度两个方向旋转实现。望远镜在天体经过中天前后进行观测。 关键技术主动光学技术是LAMOST项目最有挑战性和最核心的关键技术。为了改正球面主镜MB的球差,观测时需要实时变化改正镜MA的非球面面形,主动光学系统通过结合薄镜面和拼接镜面主动光学技术使24块薄平面子镜按要求变形,并使各子镜共焦。上千个力促动器实时控制MA的各个子镜,以便达到要求的形状。MB的37块子镜直接通过主动位移促动器调节机构联接于主体桁架之上,利用拼接镜面主动光学技术实现共焦。 LAMOST系统在世界上首次应用了在同一块大镜面上同时应用薄镜面主动光学技术和拼接镜面主动光学技术,还首次在一个光学系统中同时采用了两块大的拼接镜面。球面主镜的拼接是项目关键技术的重要组成部分,也是使项目造价大为降低的关键之一。 望远镜收集来自天体的微弱辐射,成像在焦面上,然后通过焦面仪器进行分光、探测和记录。焦面仪器是LAMOST直接获取天体光谱信息的部分,包括光纤定位装置、光纤、光谱仪和CCD探测器等几个主要部分。 “并行可控式光纤定位技术”是LAMOST又一项自主创新和关键技术。与SDSS采用的钻孔铝板和2dF采用的磁扣方式不同,LAMOST光纤定位采用了双回转光纤定位单元方案。LAMOST焦面直径1.75米,与我们吃饭用的圆桌大小相仿,如图4所示。定位系统可在数分钟的时间里将焦面上的4000根光纤按星表位置精确定位,并提供光纤位置的微调。4000个光纤定位单元在焦面上以25.6毫米等距离排列,每个单元驱动光纤在直径33毫米的范围内工作。LAMOST定位系统的优势是通过4000个定位单元并行工作,大大缩短了定位时间。也避免了SDSS那样每次观测都需要更换光纤铝板的麻烦。在一个餐桌大小的焦面板上8000个电机带动4000个光纤定位单元转到,想一想也是件震撼人心的场景。 结构由于LAMOST的独创型结构,其望远镜建筑也不同于一般的天文望远镜圆顶。它由MA楼、MB楼和焦面仪器楼三部分组成,如题图所示。MA的圆顶围挡为一带球冠的圆柱形,上部可向东西移开。焦面到MB围挡为一卧式长通道,开有百叶窗,以减少风对MA的影响,并使光路中温度均匀,避免恶化天然的大气视宁度。 三大任务简介2007年5月28日凌晨,当时正处于调试中的LAMOST喜获首条天体光谱,随着调试的进行,随后数天LAMOST获得了越来越多的天体光谱。2007年6月18日晨,单次观测获得了超过120颗的天体光谱。2008年9月27日夜,LAMOST在一次观测得到的光谱超过了1000颗,打破了由SDSS项目保持的640颗的“世界纪录”,LAMOST正式成为国际上天体光谱获取率最高的天文望远镜。最多一次可以拍下4000颗天体光谱。她的建成使我国在大规模天文光谱观测研究工作跃居国际领先地位,为我国在天文学和天体物理学许多研究领域中取得重大科研成果奠定了基础。为了充分发挥LAMOST的威力,获得最大的科学回报,天文学家们结合望远镜的功能和特点为它制定了一系列的观测计划,设计了三大核心研究课题。 任务一首先是研究宇宙和星系,一个是星系红移巡天,另一是通过获取的数据进一步研究星系的物理特性。星系物理是目前国际天文界相当热门的话题,宇宙的诞生、星系的形成以及恒星和银河系结构等前沿问题都建立在对星系物理的研究基础之上。研究宇宙大尺度结构依赖于星系红移巡天的工作。获取星系的光谱就能得到星系的红移,有了红移就有可以知道它的距离,有了距离就有了三维分布,这样就可以了解整个宇宙空间的结构。同时可以研究包括星系的形成、演化在内的宇宙大尺度结构和星系物理。这是一个环环相扣的工程,而获取星系的光谱则是最基础的一环。LAMOST的目标是观测1000万个星系、100万个类星体、外加1000万颗恒星的光谱。LAMOST建成后,由于要比SDSS计划所观测的星系和类星体的数目多十倍,由此可以预计,LAMOST将会以更高精度的方式来确定宇宙的组成和结构,从而使人类对暗能量和暗物质有更加深刻的认识。 任务二第二个核心课题就是研究恒星和银河系的结构特征。主要瞄准更暗的恒星,观测数目更多一些,这样可以更多了解银河系更远处的恒星的分布和运动情况,弄清银河系结构。因为LAMOST能够做大量恒星的样本,所以可以尽量选更多、更暗的星来做大范围的研究。恒星是众多星系的重要组成部分。通过一颗恒星的光谱,天文学家可以分析出其密度、温度等物理条件,可以分析出其元素构成和含量等化学组成,还可以测量出其运动速度和运行轨迹等。研究了不同种类的恒星的分布,可以研究出银河系的结构和银河系的形成。 任务三LAMOST的第三个核心课题是“多波段证认”,天文学界的惯例是在其他波段比如射电、红外、X射线、γ射线发现的天体要拿到光谱中分析。因为光谱理论充分,经验也多,这也造就了其它手段搜集到的有关天体的资料最终还是要通过光谱来确认。作为光谱获取率最高的天文望远镜,LAMOST对光学天文学的意义是不言而喻的。而多波段证认本身也是LAMOST的三大课题之一,通过与其它波段巡天望远镜,如X射线和望远镜相结合,它在许多天文学前沿问题的解决上都能起到相当大的作用。 大事记90年代1993年4月,以王绶琯、苏定强为首的研究集体提出LAMOST项目,建议作为中国天文重大观测设备。 1994年12月-1995年6月,在中国天文学会、中科院数理学部、中国科学院、国家科委、国家计委先后组织的多次评议和评审中LAMOST项目一直位居前列。 1996年6月,国家计委、国家科委组织两院院士对国家重大科学工程进行评审,LAMOST位居前列。 1996年7月,国家科技领导小组决策启动国家重大科学工程计划,LAMOST列入首批启动项目。 1996年10月,中国科学院成立国家重大科学工程“大天区面积多目标光纤光谱天文望远镜”项目工程指挥部、项目科学技术委员会、项目管理委员会。 1997年4月,国家计划委员会批复《LAMOST项目建议书》。 1997年8月,国家计划委员会批复《LAMOST项目可行性研究报告》。 1999年6月,中国科学院受国家发展计划委员会委托批复《LAMOST项目初步设计与概算》。 21世纪2001年8月,国家发展计划委员会批准LAMOST项目开工报告,项目正式进入施工阶段。 2004年6月,LAMOST观测楼在国家天文台兴隆观测站开工建设。 2004年12月,关键技术预研究项目—“大口径主动光学实验望远镜装置”通过验收和鉴定。 2005年6月,中国科学院组织国际著名专家对LAMOST项目进行了中期评估。 2005年9月,LAMOST项目首件大型设备(8米机架底座)在兴隆观测站成功吊装,开始了项目主体设备安装。 2005年12月,在国家天文台兴隆观测站安全顺利地完成了反射施密特改正镜(MA)机架、焦面机构和球面主镜(MB)桁架三大部套的安装,项目全面进入现场安装调试。 2007年6月,LAMOST完成3米口径的镜面、250根光纤的定位系统、1台光谱仪及2台CCD相机(被称为“小系统”)以及完整的望远镜地平式机架、焦面机架、跟踪和控制系统的装调,达到望远镜设计的光学指标,并获得天体光谱。 2008年8月,望远镜全部硬件(24块Ma子镜、37块Mb子镜、4000个光纤定位单元、4000根光纤、16台光谱仪、32台CCD相机)安装到位。 2008年10月,LAMOST落成典礼在国家天文台兴隆观测基地举行。 2009年6月4日,LAMOST顺利通过国家验收。 2010年4月17日,LAMOST被冠名为“郭守敬望远镜”。 意义LAMOST是一架我国自主创新设计、在技术上非常有挑战性的大型光学望远镜,在多项技术上走在国际前沿,是有望获得世界瞩目科学成就的国家重大科学工程。也是我国口径最大的望远镜。 LAMOST还开创了一种新的望远镜类型,LAMOST型施密特望远镜,打破了大视场望远镜不能兼有大口径的瓶颈,被国际上誉为“建造地面高效率的大口径望远镜最好的方案”。 LAMOST项目引起了国内外天文学家的广泛关注,对LAMOST巨大的科学潜能寄予厚望。美国《Science》杂志两次载文介绍 。著名的天文科普杂志《Sky & Telescope》在2000年第7期上提到: “与光谱有关的巡天望远镜是LAMOST,中国的一台不寻常的望远镜,将建在中国北部长城附近的北京天文台兴隆站。3000万美元的LAMOST有一个不动的4米主镜和5度的视场,一个可变形的镜子将星光引导到固定的主镜上。当LAMOST建成后,将是迄今为止最高产的光谱巡天工具:利用光纤、自动光纤定位装置和20台光谱仪,每次将可得到4000个天体的光谱。” 2005年春夏之交,中国科学院和LAMOST指挥部邀请了多位国际知名的天文仪器专家和天文学家对LAMOST望远镜的功能和潜在的科学意义进行评估。这其中包括美国帕洛马天文台前台长,美国Keck天文台前台长,美国叶凯士天文台前台长,SDSS项目负责人,2dF项目负责人。经过仔细的现场考察和与项目成员的深入交流,这些国际大碗认为:“LAMOST将会是一个适合于研究广泛领域中重大天体物理问题的世界级巡天设备。鉴于其集光面积和光纤数目,LAMOST潜在的功能将比SDSS数字巡天和2dF高出10到15倍。如果能达到这样高的指标,它将是一个巨大的飞越,并打开了一个广阔的‘探索空间’。LAMOST将会有非常好的科学产出,一定能够在河外天文学与银河系天文学方面产生世界级的研究成果。” LAMOST独特的设计思想也对国际天文望远镜的设计产生了重要影响。2005年6月初,在北京召开的“南极DOME C/A大视场巡天望远镜研讨会”上,一些国外天文学家提议在南极建造一台大口径的LAMOST型望远镜。国家天文台LAMOST望远镜与南极LAMOST一南一北,遥相呼应,对整个天区进行完备的深度光谱观测。 随着LAMOST的落成,很多国际研究项目和天文学家都对其表示出了极大的兴趣和热情,希望能够共同参与LAMOST的巡天观测和科学研究。这其中就包括美国的SDSS,欧洲的GAIA,英国剑桥大学的天文学家们等等。 2008年发生在中国人身边的大事太多了,但对于中国的天文学家和关心天文学的朋友来说,LAMOST的落成无疑将会是一个令之兴奋很多年的硕果。 |
随便看 |
百科全书收录4421916条中文百科知识,基本涵盖了大多数领域的百科知识,是一部内容开放、自由的电子版百科全书。