词条 | 弧度制 |
释义 | 弧度制的定义等于半径长的圆弧所对的圆心角叫做1弧度的角,用符号rad表示,读作弧度。用弧度作单位来度量角的制度叫做弧度制。 以已知角a的顶点为圆心,以任意值R为半径作圆弧,则a角所对的弧长与R之比是一个定值﹝与R无关﹞,我们称L=R时的正角为1弧度的角。以1弧度角为量角大小的单位,称此度量制为弧度制,以示与角的另一种度量制──角度制区别。 弧度制的特点任意一个角一边所对应的射线,逆时针旋转所形成的角称为正角;顺时针转动所形成的角称为负角;射线未作任何旋转,仍留在原来位置,那么我们也把它看成一个角,叫做零角。 无论采用角度制或弧度制,都能使角的集合与实数集合R存在一一对应关系:每一个角都对应唯一的一个实数。 正角的弧度值是一个正量(正实数),负角的弧度值是一个负量(负实数),零角的弧度值是零。 弧度制的基本思想弧度制的基本思想是使圆半径与圆周长有同一度量单位,然后用对应的弧长与圆半径之比来度量角度,这一思想的雏型起源于印度。印度著名数学家阿利耶毗陀﹝476?-550?﹞定圆周长为21600分,相度地定圆半径为3438分﹝即取圆周率π3.142﹞,但阿利耶毗陀没有明确提出弧度制这个概念。严格的弧度概念是由瑞士数学家欧拉﹝1707-1783﹞于1748年引入。欧拉与阿利耶毗陀不同,先定半径为1个单位,那么半圆的弧长为π,此时的正弦值为0,就记为sinπ= 0,同理,1/4圆周的弧长为π/2,此时的正弦为1,记为sin(π/2)=1。从而确立了用π、π/2分别表示半圆及1/4圆弧所对的中心角。其它的角也可依此类推。 弧度制的精髓弧度制的精髓就在于统一了度量弧与半径的单位,从而大大简化了有关公式及运算,尤其在高等数学中,其优点就格外明显。 1弧度的大小一弧度的角:等于半径长的圆弧所对的圆心角叫做1弧度的角。 |a|=l/r 1弧度约等于57.3° 大约是57°17′45″ 但准确的是等于180°/π 180°=πrad 利用弧度制证明扇形面积公式S=1/2LR.其中L是扇形的弧长,R是圆的半径如果半径为R的圆的圆心角a所对弧的长l那么|a|=l/R(a的正负由旋转方向决定。) 弧度制与角度制的换算公式360°=2π rad——→180°=π rad ——→1°= π / 180° rad≈0.01745 rad ——→1rad =180°/π ≈57.30°=57°18′ |
随便看 |
百科全书收录4421916条中文百科知识,基本涵盖了大多数领域的百科知识,是一部内容开放、自由的电子版百科全书。