请输入您要查询的百科知识:

 

词条 焊接
释义

焊接焊接是被焊工件的材质(同种或异种),通过加热或加压或两者并用,并且用或不用填充材料,使工件的材质达到原子间的建和而形成永久性连接的工艺过程。

综述

焊接过程中,工件和焊料熔化形成熔融区域,熔池冷却凝固后便形成材料之间的连接。这一过程中,通常还需要施加压力。焊接的能量来源有很多种,包括气体焰、电弧、激光、电子束、摩擦和超声波等。19世纪末之前,唯一的焊接工艺是铁匠沿用了数百年的金属锻焊。最早的现代焊接技术出现在19世纪末,先是弧焊和氧燃气焊,稍后出现了电阻焊。20世纪早期,随着第一次和第二次世界大战开战,对军用器材廉价可靠的连接方法需求极大,故促进了焊接技术的发展。今天,随着焊接机器人在工业应用中的广泛应用,研究人员仍在深入研究焊接的本质,继续开发新的焊接方法,以进一步提高焊接质量。

焊接电工 (焊接专业)第2版 中等职业教育国家规划教材

基本信息

出版社: 机械工业出版社 作者: 王建勋 任延春

丛书名: 中等职业教育国家规划教材 译者:

上架日期:2008-9-23  出版日期:2008-9-1

页数:208 版次:2-4 ISBN:711110414

装帧:平 开本:184*260

内容简介

本书第1版是根据教育部中等职业学校焊接专业“焊接电工”课程教学大纲编写的中等职业教育国家规划教材。本书是根据几年来各校在教学过程中发现的问题和弧焊电源与设备不断的发展、更新,以及国家对职业教育、教学改革新的要求,结合部分使用本书师生的意见以及企业从事焊接工作的工人及工程技术人员的意见修订而成的。

本书内容包括直流电路、正弦交流电路、磁路及变压器、半导体器件及其应用、常用低压电器与电路、电工仪表及测量、焊接电弧基础知识、弧焊变压器、硅弧焊整流器、晶闸管式弧焊整流器、新型弧焊电源(脉冲弧焊电源、晶体管式弧焊电源、逆变式弧焊电源、矩形波交流弧焊电源)、弧焊设备、弧焊电源的选择和使用等十三章。每章后有小结和习题,为便于教学,本书另配备了电子教案和习题答案。

本书主要供中等职业学校焊接专业师生作教材使用,也可作为高等职业院校焊接专业的教材,同时可作为焊工的培训教材,对焊接工程技术人员也有一定的参考价值。

目录

中等职业教育国家规划教材出版说明

第2版前言

第1版前言

绪论1

第一章直流电路5

第一节电路和电路模型5

第二节电路的基本物理量6

第三节电路的元件8

第四节电路的工作状态12

第五节基尔霍夫定律14

第六节电阻的连接16

第七节支路电流法18

第八节基尔霍夫定律验证实验19

本章小结20

习题20

第二章正弦交流电路23

第一节正弦交流电的三要素和相量

表示法23

第二节单一元件正弦交流电路26

第三节电阻、电感、电容元件串联的交流

电路31

第四节三相交流电路33

本章小结37

习题38

第三章磁路及变压器41

第一节磁场的基本物理量41

第二节铁磁材料的磁性能及能量损耗42

第三节磁路与磁路定律44

第四节交流铁心线圈电路45

第五节变压器47

本章小结52

习题53

第四章半导体器件及其应用55

第一节半导体器件55

第二节晶体管交流放大电路64

第三节整流及稳压电路66

本章小结70

习题72

第五章常用低压电器与电路73

第一节常用低压电器的分类及型号73

第二节常用低压电器74

第三节典型焊接控制电路84

本章小结87

习题88

第六章电工仪表及测量89

第一节电工仪表的分类及形式89

第二节电工测量91

本章小结98

习题99

第七章焊接电弧基础知识100

第一节焊接电弧及其引燃100

第二节焊接电弧的结构和特性102

第三节交流电弧106

第四节对弧焊电源的要求108

第五节焊接电弧静特性曲线测定实验114

第六节弧焊电源外特性曲线测定实验116

本章小结117

习题118

第八章弧焊变压器120

第一节弧焊变压器的原理及分类120

第二节常用弧焊变压器121

第三节弧焊变压器的维护、常见故障与

维修126

第四节弧焊变压器的故障检测与排除

实训127

本章小结128

习题129

第九章硅弧焊整流器130

第一节硅弧焊整流器的组成及分类130

第二节磁饱和电抗器131

第三节无反馈磁饱和电抗器式硅弧焊

整流器133

第四节全部内反馈磁饱和电抗器式硅弧焊

整流器136

第五节部分内反馈磁饱和电抗器式硅弧焊

整流器139

第六节硅弧焊整流器的维护、常见故障与

维修141

本章小结142

习题144

第十章晶闸管式弧焊整流器145

第一节概述145

第二节ZDK—500型弧焊整流器146

第三节ZX5—400晶闸管式弧焊整流器149

第四节晶闸管式弧焊整流器的常见故障与

维修152

本章小结153

习题153

第十一章新型弧焊电源155

第一节脉冲弧焊电源155

第二节晶体管式弧焊电源159

第三节逆变式弧焊电源163

第四节矩形波交流弧焊电源170

本章小结173

习题175

第十二章弧焊设备176

第一节埋弧焊设备176

第二节熔化极气体保护焊设备183

第三节钨极氩弧焊设备189

第四节等离子弧焊与切割设备192

第五节CO2气体保护焊短路过渡电弧的稳定

性实验195

本章小结197

习题197

第十三章弧焊电源的选择和使用199

第一节弧焊电源的选择199

第二节弧焊电源的安装与使用201

第三节节约用电与安全用电205

本章小结206

习题207

参考文献208

焊接(weld)

1.焊接过程的物理本质

焊接是两种或两种以上同种或异种材料通过原子或分子之间的结合和扩散连接成一体的工艺过程.

促使原子和分子之间产生结合和扩散的方法是加热或加压,或同时加热又加压.

2.焊接的分类

金属的焊接,按其工艺过程的特点分有熔焊,压焊和钎焊三大类.

熔焊是在焊接过程中将工件接口加热至熔化状态,不加压力完成焊接的方法。熔焊时,热源将待焊两工件接口处迅速加热熔化,形成熔池。熔池随热源向前移动,冷却后形成连续焊缝而将两工件连接成为一体。

在熔焊过程中,如果大气与高温的熔池直接接触,大气中的氧就会氧化金属和各种合金元素。大气中的氮、水蒸汽等进入熔池,还会在随后冷却过程中在焊缝中形成气孔、夹渣、裂纹等缺陷,恶化焊缝的质量和性能。

为了提高焊接质量,人们研究出了各种保护方法。例如,气体保护电弧焊就是用氩、二氧化碳等气体隔绝大气,以保护焊接时的电弧和熔池率;又如钢材焊接时,在焊条药皮中加入对氧亲和力大的钛铁粉进行脱氧,就可以保护焊条中有益元素锰、硅等免于氧化而进入熔池,冷却后获得优质焊缝。

压焊是在加压条件下,使两工件在固态下实现原子间结合,又称固态焊接。常用的压焊工艺是电阻对焊,当电流通过两工件的连接端时,该处因电阻很大而温度上升,当加热至塑性状态时,在轴向压力作用下连接成为一体。各种压焊方法的共同特点是在焊接过程中施加压力而不加填充材料。多数压焊方法如扩散焊、高频焊、冷压焊等都没有熔化过程,因而没有象熔焊那样的有益合金元素烧损,和有害元素侵入焊缝的问题,从而简化了焊接过程,也改善了焊接安全卫生条件。同时由于加热温度比熔焊低、加热时间短,因而热影响区小。许多难以用熔化焊焊接的材料,往往可以用压焊焊成与母材同等强度的优质接头。

钎焊是使用比工件熔点低的金属材料作钎料,将工件和钎料加热到高于钎料熔点、低于工件熔点的温度,利用液态钎料润湿工件,填充接口间隙并与工件实现原子间的相互扩散,从而实现焊接的方法。

焊接时形成的连接两个被连接体的接缝称为焊缝。焊缝的两侧在焊接时会受到焊接热作用,而发生组织和性能变化,这一区域被称为热影响区。焊接时因工件材料焊接材料、焊接电流等不同,焊后在焊缝和热影响区可能产生过热、脆化、淬硬或软化现象,也使焊件性能下降,恶化焊接性。这就需要调整焊接条件,焊前对焊件接口处预热、焊时保温和焊后热处理可以改善焊件的焊接质量。

另外,焊接是一个局部的迅速加热和冷却过程,焊接区由于受到四周工件本体的拘束而不能自由膨胀和收缩,冷却后在焊件中便产生焊接应力和变形。重要产品焊后都需要消除焊接应力,矫正焊接变形。

现代焊接技术已能焊出无内外缺陷的、机械性能等于甚至高于被连接体的焊缝。被焊接体在空间的相互位置称为焊接接头,接头处的强度除受焊缝质量影响外,还与其几何形状、尺寸、受力情况和工作条件等有关。接头的基本形式有对接、搭接、丁字接(正交接)和角接等。

对接接头焊缝的横截面形状,决定于被焊接体在焊接前的厚度和两接边的坡口形式。焊接较厚的钢板时,为了焊透而在接边处开出各种形状的坡口,以便较容易地送入焊条或焊丝。坡口形式有单面施焊的坡口和两面施焊的坡口。选择坡口形式时,除保证焊透外还应考虑施焊方便,填充金属量少,焊接变形小和坡口加工费用低等因素。

厚度不同的两块钢板对接时,为避免截面急剧变化引起严重的应力集中,常把较厚的板边逐渐削薄,达到两接边处等厚。对接接头的静强度和疲劳强度比其他接头高。在交变、冲击载荷下或在低温高压容器中工作的联接,常优先采用对接接头的焊接。

搭接接头的焊前准备工作简单,装配方便,焊接变形和残余应力较小,因而在工地安装接头和不重要的结构上时常采用。一般来说,搭接接头不适于在交变载荷、腐蚀介质、高温或低温等条件下工作。

采用丁字接头和角接头通常是由于结构上的需要。丁字接头上未焊透的角焊缝工作特点与搭接接头的角焊缝相似。当焊缝与外力方向垂直时便成为正面角焊缝,这时焊缝表面形状会引起不同程度的应力集中;焊透的角焊缝受力情况与对接接头相似。

角接头承载能力低,一般不单独使用,只有在焊透时,或在内外均有角焊缝时才有所改善,多用于封闭形结构的拐角处。

焊接产品比铆接件、铸件和锻件重量轻,对于交通运输工具来说可以减轻自重,节约能量。焊接的密封性好,适于制造各类容器。发展联合加工工艺,使焊接与锻造、铸造相结合,可以制成大型、经济合理的铸焊结构和锻焊结构,经济效益很高。采用焊接工艺能有效利用材料,焊接结构可以在不同部位采用不同性能的材料,充分发挥各种材料的特长,达到经济、优质。焊接已成为现代工业中一种不可缺少,而且日益重要的加工工艺方法。

在近代的金属加工中,焊接比铸造、锻压工艺发展较晚,但发展速度很快。焊接结构的重量约占钢材产量的45%,铝和铝合金焊接结构的比重也不断增加。

未来的焊接工艺,一方面要研制新的焊接方法、焊接设备和焊接材料,以进一步提高焊接质量和安全可靠性,如改进现有电弧、等离子弧、电子束、激光等焊接能源;运用电子技术和控制技术,改善电弧的工艺性能,研制可靠轻巧的电弧跟踪方法。

另一方面要提高焊接机械化和自动化水平,如焊机实现程序控制、数字控制;研制从准备工序、焊接到质量监控全部过程自动化的专用焊机;在自动焊接生产线上,推广、扩大数控的焊接机械手和焊接机器人,可以提高焊接生产水平,改善焊接卫生安全条件。

焊接工艺的发展历史

焊接技术是随着铜铁等金属的冶炼生产、各种热源的应用而出现的。古代的焊接方法主要是铸焊、钎焊、锻焊、铆焊。中国商朝制造的铁刃铜钺,就是铁与铜的铸焊件,其表面铜与铁的熔合线婉蜒曲折,接合良好。

春秋战国时期曾侯乙墓中的建鼓铜座上有许多盘龙,是分段钎焊连接而成的。经分析,所用的与现代软钎料成分相近。战国时期制造的刀剑,刀刃为钢,刀背为熟铁,一般是经过加热锻焊而成的。据明朝宋应星所著《天工开物》一书记载:中国古代将铜和铁一起入炉加热,经锻打制造刀、斧;用黄泥或筛细的陈久壁土撒在接口上,分段煅焊大型船锚。中世纪,在叙利亚大马士革也曾用锻焊制造兵器。

古代焊接技术长期停留在铸焊、锻焊、钎焊和铆焊的水平上,使用的热源都是炉火,温度低、能量不集中,无法用于大截面、长焊缝工件的焊接,只能用以制作装饰品、简单的工具、生活器具和武器。19世纪初,英国的戴维斯发现电弧和氧乙炔焰两种能局部熔化金属的高温热源;1885~1887年,俄国的别纳尔多斯发明碳极电弧焊钳;1900年又出现了铝热焊。20世纪初,碳极电弧焊和气焊得到应用,同时还出现了薄药皮焊条电弧焊,电弧比较稳定,焊接熔池受到熔渣保护,焊接质量得到提高,使手工电弧焊进入实用阶段,电弧焊从20年代起成为一种重要的焊接方法。也成为现代焊接工艺的发展开端。在此期间,美国的诺布尔利用电弧电压控制焊条送给速度,制成自动电弧焊机,从而成为焊接机械化、自动化的开端。1930年美国的罗宾诺夫发明使用焊丝和焊剂的埋弧焊,焊接机械化得到进一步发展。40年代,为适应铝、镁合金和合金钢焊接的需要,钨极和熔化极惰性气体保护焊相继问世。

1951年苏联的巴顿电焊研究所创造电渣焊,成为大厚度工件的高效焊接法。1953年,苏联的柳巴夫斯基等人发明二氧化碳气体保护焊,促进了气体保护电弧焊的应用和发展,如出现了混合气体保护焊、药芯焊丝气渣联合保护焊和自保护电弧焊等。1957年美国的盖奇发明等离子弧焊;40年代德国和法国发明的电子束焊,也在50年代得到实用和进一步发展;60年代又出现激光焊等离子、电子束和激光焊接方法的出现,标志着高能量密度熔焊的新发展,大大改善了材料的焊接性,使许多难以用其他方法焊接的材料和结构得以焊接。

其他的焊接技术还有1887年,美国的汤普森发明电阻焊,并用于薄板的点焊和缝焊;缝焊是压焊中最早的半机械化焊接方法,随着缝焊过程的进行,工件被两滚轮推送前进;二十世纪世纪20年代开始使用闪光对焊方法焊接棒材和链条。至此电阻焊进入实用阶段。1956年,美国的琼斯发明超声波焊;苏联的丘季科夫发明摩擦焊;1959年,美国斯坦福研究所研究成功爆炸焊;50年代末苏联又制成真空扩散焊设备。

焊接技术的发展趋势

焊接技术的发展趋势 1、提高焊接生产率是推动焊接技术发展的重要驱动力

提高生产率的途径有二:第一提高焊接熔敷率,例如三丝埋弧焊,其工艺参数分别为220A/33V、1400A40V、1100A45V。采用坡口断面小,背后设置挡板或衬垫,50~60mm的钢板可一次焊透成形,焊接速度可达到,0.4m/min以上,其熔敷率与焊条电弧焊相比在100倍以上,第二个途径则是减少坡口断面及金属熔敷,近十年来最突出的成就就是窄间隙焊接。窄间隙焊接采用气体保护焊为基础,利用单丝、双丝、三丝进行焊接,无论接头厚度如何,均可采用对接形式,例如钢板厚度为50~300mm,间隙均可设计为13mm左右,因此所需熔敷金属量成数倍、数十倍的地降低,从而大大提高生产率。窄间焊接的主要技术关键是看如何保证两侧熔透和保证电弧中心自动跟踪并处于坡口中心线上,为此,世界各国开发出多种不同的方案,因而出现了多种窄间隙焊接法。

电子束焊,等离子焊,激光焊时,可采用对接接头,且不用开坡口,因此是更理想的间窄隙焊接法,这也是它广泛受到重视的原因之一。

最新开发成功的激光电弧复合焊接方法可以提高焊接速度,如5mm的钢板或铝板,焊接速度可达2~3m/min,获得好的成形和质量,焊接变形小。

2、提高准备车间的机械化,自动化水平是当前世界先进工业国家的重点发展方向。

为了提高焊接结构的生产效率和质量,仅仅从焊接工艺着手有一定的局限性,因而世界各国特别重视车间的技术改造。准备车间的主要工序包括材料运输,材料表面去油,喷砂,涂保护漆;钢板划线,切割,开坡口;部件组装及点固。以上工序在现代化的工厂中均已采用机械化、自动化。其优点不仅是提高了产品的生产率,更重要的是提高了产品的质量。

3、焊接过程自动化,智能化是提高焊接质量稳定性,解决恶劣劳动条件的重要方向。

4、新兴工业的发展不断推动焊接技术的前进。

焊接技术自发明至今已有百多年历史,它几乎可以满足当前工业中一切重要产品生产制造的需要。但是新兴工业的发展仍然迫使焊接技术不断前进。微电子工业的发展促进微型连接工艺的和设备的发展;又如陶瓷材料和复合材料的发展促进了真空钎焊、真空扩散焊。宇航技术的发展也将促进空间焊接技术的发展。

5、热源的研究与开发是推动焊接工艺发展的根本动力。

焊接工艺几乎运用了世界上一切可以利用的热源,其中包括火焰、电弧、电阻、超声波、摩擦、等离子、电子束、激光束、微波等等(我司主要以弧焊、电阻焊自动化焊接设备为主),历史上每一种热源的出现,都伴有新的焊接工艺的出现。但是,至今焊接热源的开发与研究并未终止。

6、节能技术是普遍关注的问题

众所周知,焊接消耗能量甚大,以焊条电弧焊为例,每台约10KVA,埋弧焊机每台90KVA,电阻焊机可高达上千KVA,不少新技术的出现就是为了实现这一节能目标。在电阻点焊中,利用电子技术的发展,将交流点焊机改成次级整流点焊机,可以提高焊机的功率因素,减少焊机容量,1000KVA的点焊机可以降低至200KVA,而仍能达到同样的焊接效果。近十年来,逆变焊机的出现是另外一个成功的例子,它可以减少焊机的重量,提高焊机的功率因率的控制性能,已广泛应用于生产。

焊接方法

焊接技术主要应用在金属母材上,常用的有电弧焊,氩弧焊,CO2保护焊,氧气-乙炔焊,激光焊接,电渣压力焊等多种,塑料等非金属材料亦可进行焊接。金属焊接方法有40种以上,主要分为熔焊、压焊和钎焊三大类。

熔焊是在焊接过程中将工件接口加热至熔化状态,不加压力完成焊接的方法。熔焊时,热源将待焊两工件接口处迅速加热熔化,形成熔池。熔池随热源向前移动,冷却后形成连续焊缝而将两工件连接成为一体。

在熔焊过程中,如果大气与高温的熔池直接接触,大气中的氧就会氧化金属和各种合金元素。大气中的氮、水蒸汽等进入熔池,还会在随后冷却过程中在焊缝中形成气孔、夹渣、裂纹等缺陷,恶化焊缝的质量和性能。

压焊是在加压条件下,使两工件在固态下实现原子间结合,又称固态焊接。常用的压焊工艺是电阻对焊,当电流通过两工件的连接端时,该处因电阻很大而温度上升,当加热至塑性状态时,在轴向压力作用下连接成为一体。

各种压焊方法的共同特点是在焊接过程中施加压力而不加填充材料。多数压焊方法如扩散焊、高频焊、冷压焊等都没有熔化过程,因而没有象熔焊那样的有益合金元素烧损,和有害元素侵入焊缝的问题,从而简化了焊接过程,也改善了焊接安全卫生条件。同时由于加热温度比熔焊低、加热时间短,因而热影响区小。许多难以用熔化焊焊接的材料,往往可以用压焊焊成与母材同等强度的优质接头。

钎焊是使用比工件熔点低的金属材料作钎料,将工件和钎料加热到高于钎料熔点、低于工件熔点的温度,利用液态钎料润湿工件,填充接口间隙并与工件实现原子间的相互扩散,从而实现焊接的方法。

焊接时形成的连接两个被连接体的接缝称为焊缝。焊缝的两侧在焊接时会受到焊接热作用,而发生组织和性能变化,这一区域被称为热影响区。焊接时因工件材料焊接材料、焊接电流等不同,焊后在焊缝和热影响区可能产生过热、脆化、淬硬或软化现象,也使焊件性能下降,恶化焊接性。这就需要调整焊接条件,焊前对焊件接口处预热、焊时保温和焊后热处理可以改善焊件的焊接质量。

焊接-工业艺术

焊接的出现迎合了金属艺术发展对新工艺手段的需要。而在另一方面,金属在焊接热量作用下所产生的独特美妙的变化也满足了金属艺术对新的艺术表现语言的需求。在今天的金属艺术创作中,焊接可以而且正在被作为一种独特的艺术表现语言而着力加以表现。本文对这一技术的出现与运用进行了分析。

艺术创造与工艺方法永远是密不可分的。作为一种工业技术,焊接的出现迎合了金属艺术发展对新的工艺手段的需要。而在另一方面,金属在焊接热量作用下所产生的独特美妙的变化也满足了金属艺术对新的艺术表现语言的需求。在今天的金属艺术创作中,焊接可以而且正在被作为一种独特的艺术表现语言而着力加以表现。金属焊接艺术可以作为一种相对独立的艺术形式以分支的方式从传统的金属艺术中分离出来,这是因为焊接具有艺术性。焊接可以产生丰富的艺术创作的表现语言。焊接通常是在高温下进行的,而金属在高温下会产生许多美妙丰富的变化。金属母材会发生颜色变化和热变形(即焊接热影响区) ;焊丝熔化后会形成一些漂亮的肌理;而焊接缺陷在焊接艺术中更是经常被应用。焊接缺陷是指焊接过程中,在焊接接头产生的不符合设计或工艺要求的缺陷。其表现形式主要有焊接裂纹、气孔、咬边、未焊透、未熔合、夹渣、焊瘤、塌陷、凹坑、烧穿、夹杂等。这是个十分有趣的现象 :焊接的艺术性通常体现在一些工业焊接的失败操作之中,或者说蕴藏于一些工业焊接极力避免的焊接缺陷之中。其次,焊接艺术语言是独特的。选用不同的金属材料,使用不同的焊接工艺,焊接的艺术性可以在不同的金属艺术形式中发挥得淋漓尽致。

在焊接雕塑作品中,焊缝和割痕不是作为一种技术加工的痕迹被动地存在,而是以一种精彩的、不可或缺的表现语言着力地加以体现的。一件焊接雕塑,粗的焊缝裸露在雕塑表面,各种不规则的切割痕迹也变成了艺术家优美的艺术语言在很多情况下,由于焊接雕塑所追求的粗糙质朴的风格,金属的锈蚀、瑕疵也大多根据作品的需要特意保留,因此,在焊接雕塑中常常可以感觉到一种非雕琢的、原始的美。

雕塑下部的钢板拼接处的焊缝很粗大,从焊接工艺的牢固性来看,这显然不仅仅是出于对雕塑结实程度的考虑,在这件雕塑中,下部几条扭曲的焊缝已经作为雕塑整体审美的一个重要因素而成为其不可缺少的一部分。从雕塑整体来看,不论是上半部分的文字造型,还是下半部分的肌理处理,到处有扭曲的焊接痕迹的出现,整个作品达到了整体视觉语言的统一。 手工等离子切割的方法,利用切割时电流的热量,使切割边缘产生热影响区,这样就给亮白色的不锈钢“染”上了一圈略带渐变的色彩。同时,通过对焊接规范的调节,割枪喷出的强烈气流会在切割钢板熔化的瞬间在切割边缘“吹”起一圈随机形成的肌理,在切割完成金属冷却后,固化为一道美丽的割痕,与中间平坦光亮的不锈钢板材形成了质感的对比。这种随机效果的形成过程带有一定的偶然性,但又是在一定的焊接规范下必然产生的现象。从尺寸的角度考虑,尺寸较大的焊接艺术壁饰可采用半自动CO2气体保护焊,较小的可采用手工钨极氩弧焊。

如果把一幅壁饰作品看成一幅画的话,画面中的点、线、面、黑、白、灰甚至颜色的处理都可以通过焊接的方法来实现。各种型号、各种材质的金属丝,应用不同的焊接工艺会在画面上以不同的形式出现。不同金属的颜色不同,不锈钢的亮银色、铝材的亚银色、碳钢的乌亮色,钛钢、青铜、紫铜、黄铜而且就钢材来说,不同的钢材在高温受热时会出现不同的颜色变化,即焊接热影响区不同。另外,切割也是焊接艺术壁饰创作的方法之一,既可以与焊接结合使用,也可以单独使用,这完全取决于创作者的创作意图和对工艺与效果的掌握程度。以上所述的这些方法综合起来,变化的丰富可想而知。

塑料焊接

采用加热和加压或其他方法使热塑性塑料制品的两个或多个表面熔合成为一个整体的方法。

焊接作业中发生火灾、爆炸事故的原因

(1)焊接切割作业时,尤其是气体切割时,由于使用压缩空气或氧气流的喷射,使火星、熔珠和铁渣四处飞溅(较大的熔珠和铁渣能飞溅到距操作点5m以外的地方),当作业环境中存在易燃、易爆物品或气体时,就可能会发生火灾和爆炸事故。

(2)在高空焊接切割作业时,对火星所及的范围内的易燃易爆物品未清理干净,作业人员在工作过程中乱扔焊条头,作业结束后未认真检查是否留有火种。

(3)气焊、气割的工作过程中未按规定的要求放置乙炔发生器,工作前未按要求检查焊(割)炬、橡胶管路和乙炔发生器的安全装置。

(4)气瓶存在制定方面的不足,气瓶的保管充灌、运输、使用等方面存在不足,违反安全操作规程等。

(5)乙炔、氧气等管道的制定、安装有缺陷,使用中未及时发现和整改其不足。

(6)在焊补燃料容器和管道时,未按要求采取相应措施。在实施置换焊补时,置换不彻底,在实施带压不置换焊补时压力不够致使外部明火导入等。

焊接作业中发生火灾、爆炸事故的防范措施

(1)焊接切割作业时,将作业环境l Om范围内所有易燃易爆一380.

物品清理干净,应注意作业环境的地沟、下水道内有无可燃液体和可燃气体,以及是否有可能泄漏到地沟和下水道内可燃易爆物质,以免由于焊渣、金属火星引起灾害事故。

(2)高空焊接切割时,禁止乱扔焊条头,对焊接切割作业下方应进行隔离,作业完毕应做到认真细致的检查,确认无火灾隐患后方可离开现场。

(3)应使用符合国家有关标准、规程要求的气瓶,在气瓶的贮存、运输、使用等环节应严格遵守安全操作规程。

(4)对输送可燃气体和助燃气体的管道应按规定安装、使用和管理,对操作人员和检查人员应进行专门的安全技术培训。

(5)焊补燃料容器和管道时,应结合实际情况确定焊补方法。实施置换法时,置换应彻底,工作中应严格控制可燃物质的含影实施带压不置换法时,应按要求保持一定的电压。工作中应严格控制其含氧量。要加强检测,注意监护,要有安全组织措施。

内容摘要:作为一种工业技术,焊接的出现迎合了金属艺术发展对新工艺手段的需要。而在另一方面,金属在焊接热量作用下所产生的独特美妙的变化也满足了金属艺术对新的艺术表现语言的需求。在今天的金属艺术创作中,焊接可以而且正在被作为一种独特的艺术表现语言而着力加以表现。本文对这一技术的出现与运用进行了分析。

关键词:金属艺术 焊接

艺术创造与工艺方法永远是密不可分的。作为一种工业技术,焊接的出现迎合了金属艺术发展对新的工艺手段的需要。而在另一方面,金属在焊接热量作用下所产生的独特美妙的变化也满足了金属艺术对新的艺术表现语言的需求。在今天的金属艺术创作中,焊接可以而且正在被作为一种独特的艺术表现语言而着力加以表现。

金属焊接艺术可以作为一种相对独立的艺术形式以分支的方式从传统的金属艺术中分离出来,这是因为:

首先,焊接具有艺术性。

焊接可以产生丰富的艺术创作的表现语言。焊接通常是在高温下进行的,而金属在高温下会产生许多美妙丰富的变化 :金属母材会发生颜色变化和热变形(即焊接热影响区) ;焊丝熔化后会形成一些漂亮的肌理 ;而焊接缺陷在焊接艺术中更是经常被应用。焊接缺陷是指焊接过程中,在焊接接头产生的不符合设计或工艺要求的缺陷。其表现形式主要有焊接裂纹、气孔、咬边、未焊透、未熔合、夹渣、焊瘤、塌陷、凹坑、烧穿、夹杂等。这是个十分有趣的现象 :焊接的艺术性通常体现在一些工业焊接的失败操作之中,或者说蕴藏于一些工业焊接极力避免的焊接缺陷之中。

其次,焊接艺术语言是独特的。

上述种种焊接缺陷的表现形式以及焊接热影响区,是通过一定规范下的焊接操作形成的,也只有通过焊接的方式才会产生这些艺术语言。焊接艺术作品的表面效果是其它金属加工工艺无法或者很难实现的,因而说焊接艺术具有独特的艺术性。

选用不同的金属材料,使用不同的焊接工艺,焊接的艺术性可以在不同的金属艺术形式中发挥得淋漓尽致:

1. 金属焊接雕塑

在焊接雕塑作品中,焊缝和割痕不是作为一种技术加工的痕迹被动地存在,而是以一种精彩的、不可或缺的表现语言着力地加以体现的。一件焊接雕塑,粗的焊缝裸露在雕塑表面,各种不规则的切割痕迹也变成了艺术家优美的艺术语言……在很多情况下,由于焊接雕塑所追求的粗糙质朴的风格,金属的锈蚀、瑕疵也大多根据作品的需要特意保留,因此,在焊接雕塑中常常可以感觉到一种非雕琢的、原始的美。

在图2中,雕塑下部的钢板拼接处的焊缝很粗大,从焊接工艺的牢固性来看,这显然不仅仅是出于对雕塑结实程度的考虑,在这件雕塑中,下部几条扭曲的焊缝已经作为雕塑整体审美的一个重要因素而成为其不可缺少的一部分。从雕塑整体来看,不论是上半部分的文字造型,还是下半部分的肌理处理,到处有扭曲的焊接痕迹的出现,整个作品达到了整体视觉语言的统一。

2. 金属焊接壁饰

如果把一幅壁饰作品看成一幅画的话,画面中的点、线、面、黑、白、灰甚至颜色的处理都可以通过焊接的方法来实现。各种型号、各种材质的金属丝,应用不同的焊接工艺会在画面上以不同的形式出现。不同金属的颜色不同,不锈钢的亮银色、铝材的亚银色、碳钢的乌亮色,钛钢、青铜、紫铜、黄铜……而且就钢材来说,不同的钢材在高温受热时会出现不同的颜色变化,即焊接热影响区不同。另外,切割也是焊接艺术壁饰创作的方法之一,既可以与焊接结合使用,也可以单独使用,这完全取决于创作者的创作意图和对工艺与效果的掌握程度。以上所述的这些方法综合起来,变化的丰富可想而知。

图3所示作品采用的是手工等离子切割的方法,利用切割时电流的热量,使切割边缘产生热影响区,这样就给亮白色的不锈钢“染”上了一圈略带渐变的色彩。同时,通过对焊接规范的调节,割枪喷出的强烈气流会在切割钢板熔化的瞬间在切割边缘“吹”起一圈随机形成的肌理,在切割完成金属冷却后,固化为一道美丽的割痕,与中间平坦光亮的不锈钢板材形成了质感的对比。这种随机效果的形成过程带有一定的偶然性,但又是在一定的焊接规范下必然产生的现象。

从尺寸的角度考虑,尺寸较大的焊接艺术壁饰可采用半自动CO2气体保护焊,较小的可采用手工钨极氩弧焊。

目前焊接系统的特点

目前系统结构特点

1. 机械装置

点焊机系统由机械装置、供电装置、控制装置三大部分组成。点焊机为了适应焊接工艺要求,加压机构(焊钳)采用了双行程快速气压传动机构,通过切换行程控制手柄改变焊钳开口度,可分为大开和小开来满足焊接操作要求。通常状态为焊钳短行程张开,当把控制按钮切换到“通电”位置,扣动手柄开关则焊钳夹紧加压,同时电流在控制系统控制下完成一个焊接周期后恢复到短行程张开状态。

2. 供电装置

主电力电路由电阻焊变压器、可控硅单元、主电力开关、焊接回路等组成。目前,我们采用的焊接设备是功率200kVA、次级输出电压20V的单相工频交流电阻焊机。由于多种车型共线生产,焊钳要焊接高强度钢板和低碳钢薄板,焊钳枪臂要传递较大的机械力和焊接电流,因此焊钳的强度、刚度、发热要满足一定要求,并且要具有良好的导电和导热性,同时要求焊钳采用通水冷却,所以选择焊钳电极臂能够承受400kg压力的新型焊钳。

3. 控制装置

控制装置主要提供信号控制电阻焊机动作接通和切断焊接电流,控制焊接电流值,进行故障监测和处理。

焊接注意事项

一、电弧的长度

电弧的长度与焊条涂料种类和药皮厚度有关系。但都应尽可能采取短弧,特别是低氢焊条。电弧长可能造成气孔。短弧可避免大气中的O2、N2等有害气体侵入焊缝金属,形成氧化物等不良杂质而影响焊缝质量。

二、焊接速度

适宜的焊接速度是以焊条直径、涂料类型、焊接电流、被焊接物的热容量、结构开头等条件有其相应变化,不能作出标准的规定。保持适宜的焊接速度,熔渣能很好的覆盖着熔潭。使熔潭内的各种杂质和气体有充分浮出时间,避免形成焊缝的夹渣和气孔。在焊接时如运棒速度太快,焊接部位冷却时,收缩应力会增大,使焊缝产生裂缝。

焊丝选用的要点

焊丝的选择要根据被焊钢材种类、焊接部件的质量要求、焊接施工条件(板厚、坡口形状、焊接位置、焊接条件、焊后热处理及焊接操作等待)、成本等综合考虑。

焊丝选用要考虑的顺序如下:

①根据被焊结构的钢种选择焊丝 对于碳钢及低合金高强钢,主要是按“等强匹配”的原则,选择满足力学性能要求的焊丝。对于耐热钢和耐候钢,主要是侧重考虑焊缝金属与母材化学成分的一致相似,以满足耐热性和耐腐蚀性等方面的要求。

②根据被焊部件的质量要求(特别是冲击韧性)选择焊丝 与焊接条件、坡口形状、保护气体混合比等工艺条件有关,要在确保焊接接头性能的前提下,选择达到最大焊接效率及降低焊接成本的焊接材料。

③根据现场焊接位置对应于被焊工件的板厚选择所使用的焊丝直径,确定所使用的电流值,参考各生产厂的产品介绍资料及使用经验,选择适合于焊接位置及使用电流的焊丝牌号。

焊接工艺性能包括电弧稳定性、飞溅颗粒大小及数量、脱渣性、焊缝外观与形状等。对于碳钢及低合金钢的焊接(特别是半自动焊),主要是根据焊接工艺性能来选择焊接方法及焊接材料。

2、 实芯焊丝的选用

⑴埋弧焊焊丝

焊丝和焊剂是埋弧焊的消耗材料,从碳素钢到高镍合金多种金属材料的焊接都可以选用焊丝和焊剂配合进行埋弧焊接.。埋弧焊焊丝的选用既要考虑焊剂成分的影响,又要考虑母材的影响。为了得到不同的焊缝成分和力学性能,可以采用一种焊剂(主要是熔炼焊剂)与几种焊丝配合,也可以采用一种焊丝与几种焊剂(主要是烧结焊剂)配合。A、 低碳钢和低合金钢用焊丝

低碳钢和低合金钢埋弧焊常用焊丝有如下三类:

①低锰焊丝(如H08A)常配合高锰焊剂用于低碳钢用强度较低的低合金钢焊接。

②中锰焊丝(如H08MnA H10MnSi)主要用于低合金钢焊接,也可配合低锰焊剂用于低碳钢焊接。

③高锰焊丝(H10Mn2 H08Mn2Si)用于低合金钢焊接。

B、低合金高强钢用焊丝

低合金高强钢用焊丝含Mn 1%以上,含Mo 0.3%-0.8%,如H08MnMoA、H08Mn2MoA,用于强度较高的低合金高强钢焊接。此外,根据低合金高强钢的成分用使用性能要求,还可在焊丝中加入Ni、Cr、V及RE等元素,提高焊缝性能。

强度级别590Mpa级的焊缝金属多采用Mn- Mo系焊丝,如H08MnMoA、H08Mn2MoA、H10Mn2Mo等。

C、不锈钢用焊丝

不锈钢焊接时,采用的焊丝成分要与被焊接的不锈钢成分基本一致。焊接铬不锈钢时可采用H0Cr14 H1Cr13 H1Cr17等焊丝,焊接铬镍不锈钢时,可采用H0Cr19Ni9 H0Cr19Ni9Ti等焊丝;焊接超低碳不锈钢时,应采用相应的超低碳焊丝,如H00Cr19Ni9等。焊剂可采用熔炼型或烧结型,要求焊剂的氧化性要小,以减少合金元素的烧损。

D.焊条(电焊)

1焊条型号J422

J422是钛钙型药皮的碳钢焊条。交直流两用,可进行全位置焊接。具有优良的焊接工艺性能及良好的力学性能;电弧稳定,飞溅小,脱渣易,再引弧容易;焊缝成型美观,焊波可宽、可窄、可薄、可厚,焊接轻松,效率高。


用途:用于焊接较重要的低碳钢结构和强度等级低的低合金钢结构,如Q235、09MnV、09Mn2等。

焊接质量标准

1 焊接质量 GB6416-1986 影响钢熔化焊接头质量的技术因素

2 焊接质量 GB6417-1986 金属熔化焊焊缝缺陷分类及说明

3 焊接质量 TJ12.1-1981 建筑机械焊接质量规定

4 焊接质量 JB/ZQ3679 焊接部位的质量

5 焊接质量 JB/ZQ3680 焊缝外观质量

6 焊接质量 JB/TQ330-1983 通风机焊接质量检验

7 焊接质量 CB999-1982 船体焊缝表面质量检验方法

8 焊接质量 JB3223-1983 焊条质量管理规程

9 2005年废止的焊接标准 GB/T 12469-1990 焊接质量保证 钢熔化焊接头的要求和缺陷分级

焊接种类

1、焊条电弧焊:

原理——用手工操作焊条进行焊接的电弧焊方法。利用焊条与焊件之间建立起来的稳定燃烧的电弧,使焊条和焊件熔化,从而获得牢固的焊接接头。属气-渣联合保护。

主要特点——操作灵活;待焊接头装配要求低;可焊金属材料广;焊接生产率低;焊缝质量依赖性强(依赖于焊工的操作技能及现场发挥)。

应用——广泛用于造船、锅炉及压力容器、机械制造、建筑结构、化工设备等制造维修行业中。适用于(上述行业中)各种金属材料、各种厚度、各种结构形状的焊接。

2、埋弧焊(自动焊):

原理——电弧在焊剂层下燃烧。利用焊丝和焊件之间燃烧的电弧产生的热量,熔化焊丝、焊剂和母材(焊件)而形成焊缝。属渣保护。

主要特点——焊接生产率高;焊缝质量好;焊接成本低;劳动条件好;难以在空间位置施焊;对焊件装配质量要求高;不适合焊接薄板(焊接电流小于100A时,电弧稳定性不好)和短焊缝。

应用——广泛用于造船、锅炉、桥梁、起重机械及冶金机械制造业中。凡是焊缝可以保持在水平位置或倾斜角不大的焊件,均可用埋弧焊。板厚需大于5毫米(防烧穿)。焊接碳素结构钢、低合金结构钢、不锈钢、耐热钢、复合钢材等。

3、二氧化碳气体保护焊(自动或半自动焊):

原理:利用二氧化碳作为保护气体的熔化极电弧焊方法。属气保护。

主要特点——焊接生产率高;焊接成本低;焊接变形小(电弧加热集中);焊接质量高;操作简单;飞溅率大;很难用交流电源焊接;抗风能力差;不能焊接易氧化的有色金属。

应用——主要焊接低碳钢及低合金钢。适于各种厚度。广泛用于汽车制造、机车和车辆制造、化工机械、农业机械、矿山机械等部门。

4、MIG/MAG焊(熔化极惰性气体保护焊):

原理——采用惰性气体作为保护气,使用焊丝作为熔化电极的一种电弧焊方法。

保护气通常是氩气或氦气或它们的混合气。MIG用惰性气体,MAG在惰性气体中加入少量活性气体,如氧气、二氧化碳气等。

主要特点——焊接质量好;焊接生产率高;无脱氧去氢反应(易形成焊接缺陷,对焊接材料表面清理要求特别严格);抗风能力差;焊接设备复杂。

应用——几乎能焊所有的金属材料,主要用于有色金属及其合金,不锈钢及某些合金钢(太贵)的焊接。最薄厚度约为1毫米,大厚度基本不受限制。

5、TIG焊(钨极惰性气体保护焊)

原理——在惰性气体保护下,利用钨极与焊件间产生的电弧热熔化母材和填充焊丝(也可不加填充焊丝),形成焊缝的焊接方法。

主要特点——适应能力强(电弧稳定,不会产生飞溅);焊接生产率低(钨极承载电流能力较差(防钨极熔化和蒸发,防焊缝夹钨));生产成本较高。

应用——几乎可焊所有金属材料,常用于不锈钢,高温合金,铝、镁、钛及其合金,难熔活泼金属(锆、钽、钼、铌等)和异钟金属的焊接。焊接厚度一般在6毫米以下的焊件,或厚件的打底焊。

6、等离子弧焊

原理——借助水冷喷嘴对电弧的拘束作用,获得高能量密度的 等离子弧进行焊接的方法。

主要特点(与氩弧焊比)——(1)能量集中、温度高,对大多数金属在一定厚度范围内都能获得小孔效应,可以得到充分熔透、反面成形均匀的焊缝。(2)电弧挺度好,等离子弧基本是圆柱形,弧长变化对焊件上的加热面积和电流密度影响比较小。所以,等离子弧焊的弧长变化对焊缝成形的影响不明显。(3)焊接速度比氩弧焊快。(4)能够焊接更细、更薄加工件。(4)设备复杂,费用较高。

应用

(1)穿透型(小孔型)等离子弧焊:利用等离子弧直径小、温度高、能量密度大、穿透力强的特点,在适当的工艺参数条件下(较大的焊接电流100A~500A),将焊件完全熔透,并在等离子流力作用下,形成一个穿透焊件的小孔,并从焊件的背面喷出部分等离子弧的等离子弧焊接方法。可单面焊双面成形,最适于焊接3~8毫米不锈钢,12毫米以下钛合金,2~6毫米低碳钢或低合金结构钢以及铜、黄铜、镍及镍合金的对接焊。(板太厚,受等离子弧能量密度的限制,形成小孔困难;板太薄,小孔不能被液态金属完全封闭,固不能实现小孔焊接法。)

(2)熔透型(溶入型)等离子弧焊:采用较小的焊接电流(30A~100A)和较低的等离子气体流量,采用混合型等离子弧焊接的方法。不形成小孔效应。主要用于薄板(0.5~2.5毫米以下)的焊接、多层焊封底焊道以后各层的焊接及角焊缝的焊接。

(3)微束等离子弧:焊接电流在30A以下的等离子弧焊。喷嘴直径很小(Φ0.5~Φ1.5毫米),得到针状细小的等离子弧。主要用于焊接1毫米以下的超薄、超小、精密的焊件。

附注

1、以上是常用的几种熔焊方法,各有优点和不足,选择焊接方法时,要考虑的因素比较多,如:焊件材料的种类、板厚、焊缝在空间的位置等。选焊接方法的原则是:在保证焊接接头质量的前提下,用总成本低的焊接方法。

焊接温度控制

熔池温度,直接影响焊接质量,熔池温度高、熔池较大、铁水流动性好,易于熔合,但过高时,铁水易下淌,单面焊双面成形的背面易烧穿,形成焊瘤,成形也难控制,且接头塑性下降,弯曲易开裂。熔池温度低时,熔池较小,铁水较暗,流动性差,易产生未焊透,未熔合,夹渣等缺陷。

熔池温度与焊接电流、焊条直径、焊条角度、电弧燃烧时间等有着密切关系,针对有关因素采取以下措施来控制熔池温度。

直径

1、焊接电流与焊条直径:根据焊缝空间位置、焊接层次来选用焊接电流和焊条直径,开焊时,选用的焊接电流和焊条直径较大,立、横仰位较小。如12mm平板对接平焊的封底层选用φ3.2mm的焊条,焊接电流:80-85A,填充,盖面层选用φ4.0mm的焊条,焊接电流:165-175A,合理选择焊接电流与焊条直径,易于控制熔池温度,是焊缝成形的基础。

方法

2、运条方法,圆圈形运条熔池温度高于月牙形运条温度,月牙形运条温度又高于锯齿形运条的熔池温度,在12mm平焊封底层,采用锯齿形运条,并且用摆动的幅度和在坡口两侧的停顿,有效的控制了熔池温度,使熔孔大小基本一致,坡口根部未形成焊瘤和烧穿的机率有所下降,未焊透有所改善,使乎板对接平焊的单面焊接双面成形不再是难点。

角度

3、焊条角度,焊条与焊接方向的夹角在90度时,电弧集中,熔池温度高,夹角小,电弧分散,熔池温度较低,如12mm平焊封底层,焊条角度:50-70度,使熔池温度有所下降,避免了背面产生焊瘤或起高。又如,在12mm板立焊封底层换焊条后,接头时采用90-95度的焊条角度,使熔池温度迅速提高,熔孔能够顺利打开,背面成形较平整,有效地控制了接头点内凹的现象。

时间

4、电弧燃烧时间,φ57×3.5管子的水平固定和垂直固定焊的实习教学中,采用断弧法施焊,封底层焊接时,断弧的频率和电弧燃烧时间直接影响着熔池温度,由于管壁较薄,电弧热量的承受能力有限,如果放慢断弧频率来降低熔池温度,易产生缩孔,所以,只能用电弧燃烧时间来控制熔池温度,如果熔池温度过高,熔孔较大时,可减少电弧燃烧时间,使熔池温度降低,这时,熔孔变小,管子内部成形高度适中,避免管子内部焊缝超高或产生焊瘤。

焊接技能强化训练(中职中专)

焊接的发展历史

金属焊接和切割的发展历史见下表:

约公元前 3200 年 苏梅尔人使用钎焊制作装饰品

约公元前 1500 年 首次发现使用火焰加压或锻焊制作的焊接物品

1782 年 利希滕贝格发现电弧

1809 年 戴威(英国物理学家)使用电弧作为光源

1867 年 埃里库·托马斯发现钢的电阻焊

1885 年 贝尔南多斯和奥尔柴夫斯基试验确定电弧焊接方法

1890 年 斯拉维亚诺夫发明非熔化金属电极的电弧焊接方法

1892 年 发现乙炔

1895 年 发明气体液化方法

1896 年 德雷格尔发明使用吸入式压力喷咀产生焊接火焰

1901 年 熔解乙炔首次得到应用

1908 年 格其尔贝格使用涂料焊条进行焊接修复

1937 年 德国采用埋弧焊

1940 年 美国使用氦气 TIG焊

1948 年 德国使用氩气 TIG焊

1952 年 CO2气体保护焊开始应用

1955 年 苏联应用电渣焊

1956 年 带极堆焊申请专利

1957 年 电渣焊进一步发展

1957 年 等离子焊接方法得到应用

1961 年 电子束焊机获得专利

1963 年 等离子焊应用

1965 年 药芯焊丝在苏联应用

随便看

 

百科全书收录4421916条中文百科知识,基本涵盖了大多数领域的百科知识,是一部内容开放、自由的电子版百科全书。

 

Copyright © 2004-2023 Cnenc.net All Rights Reserved
更新时间:2024/12/23 5:06:56