词条 | 氦-3 |
释义 | 氦-3 (He-3) 无色,无味,无臭稳定的氦气同位素气体,储存于气瓶中的高压气体,天然氦-3含量是1.38x10-6。当其含量增加导致氧气含量低于19.5%时有可能引起窒息。配备自吸式呼吸面具。 分子量 3.01603 标准体积 6.032 m3/kg @NTP 沸点 -452°F(-270°C) @1 atm 危险不燃烧气体气瓶材质 铁合金,铝 DOT 标签 Green, Nonflammable Gas 安全资料 无毒,会导致窒息。 DOT 危险等级 2.2 UN No. UN 1046 CAS No. 7440-59-7 发现1996年,戴维·李(David M. Lee, 1931~ )、道格拉斯·奥谢罗夫(Douglas D. Osheroff, 1945~)和罗伯特·理查森(Richard C. Richardson, 1937~ )因发现了氦-3(3He)中的超流动性,共同分享了1996年度的诺贝尔物理学奖。 具体介绍在自然界,存在着3He和4He两种同位素。4He的原子核有两个质子和两个中子,称为玻色子;而3He只有一个中子,称为费米子。20世纪30年代末期,卡皮查发现4He的超流动性。朗道从理论上解释了这种现象,他认为当温度在绝对温度2.17K时,4He原子发生玻色爱因斯坦凝聚,成为超流体,而像3He这样的费米子即使在最低能量下也不能发生凝聚,所以不可能发生超流动现象。金属的超导理论(BCS理论)的提出使得人们认为在极低温度下3He也可能会形成超流体。但是人们一直未能在实验上发现3He的超流动性。20世纪70年代,戴维·李领导的康奈尔低温小组首次发现了3He的超流动性,不久,其它的研究小组也证实了他们的发现。 3He超流体的发现在天体物理学上有着奇特的应用。人们使用相变产生的3He超流体来验证关于在宇宙中如何形成所谓宇宙弦的理论。研究小组用中微子引起的核反应局部快速加热超流体3He,当它们重新冷却后,会形成一些涡旋球。这些涡旋球就相当于宇宙弦。这个结果虽然不能作为宇宙弦存在的证据,但是可以认为是对3He流体涡旋形成的理论的验证。3He超流体的发现不仅对凝聚态物理的研究起了推动作用,而且在此发现过程中所使用的核磁共振的方法,开创了用核磁共振技术进行断层检验的先河,今天核磁共振断层检验已发展成为医疗诊断的普遍手段。 巨大应用前景氦-3的巨大应用前景以及登月计划 月球是解决地球能源危机的理想之地,“氦-3”是一种目前已被世界公认的高效、清洁、安全、廉价的核聚变发电燃料。根据科学统计表明,10吨氦-3就能满足我国全国一年所有的能源需求,100吨氦-3便能提供全世界使用一年的能源总量。但氦-3在地球上的蕴藏量很少,目前人类已知的容易取用的氦-3全球仅有500千克左右。而根据人类已得出的初步探测结果表明,月球地壳的浅层内竟含有上百万吨氦-3。如此丰富的核燃料,足够地球人使用上万年。我国探月工程的一项重要计划,就是对月球氦-3含量和分布进行一次由空间到实地的详细勘察,为人类未来利用月球核能奠定坚实的基础 。 我国的探月计划中,有一件事情是外国从未涉足的:我国计划测量月球的土壤层到底有多厚,这对于我们计算月球氦-3含量意义重大,如果工程顺利,我们估算氦-3的资源含量可能要比前人前进一步。最后,我们将研究地月空间环境,这对于地球环境和人类社会的发展都是至关重要的。 人类未来的新能源① 氦-3是一种清洁、安全和高效率的核融合发电燃料。开发利用月球土壤中的氦-3将是解决人类能源危机的极具潜力的途径之一。 ② 氦-3是氦的同位素,含有两个质子和一个中子。它有许多特殊的性质。根据稀释制冷理论,当氦-3和氦-4以一定的比例相混合后,温度可以降低到无限接近绝对零度。在温度达到2.18k以下的时候,液体状态的氦-3还会出现“超流”现象,即没有黏滞性,它甚至可以从盛放它的杯子中“爬”出去。然而,当前氦-3最被人重视的特性还是它作为能源的潜力。氦-3可以和氢的同位素发生核聚变反应,但是与一般的核聚变反应不同,氦-3在聚变过程中不产生中子,所以放射性小,而且反应过程易于控制,既环保又安全,但是地球上氦-3的储量总共不超过几百公斤,难以满足人类的需要。科学家发现,虽然地球上氦-3的储量非常少,但是在月球上,它的储量却是非常可观的。 ③ 氦大部分集中在颗粒小于50微米的富含钛铁矿的月壤中。估计整个月球可提供71.5万吨氦-3。这些氦-3所能产生的电能,相当于1985年美国发电量的4万倍,考虑到月壤的开采、排气、同位素分离和运回地球的成本,氦-3的能源偿还比估计可达250。这个偿还比和铀235生产核燃料(偿还比约20)及地球上煤矿开采(偿还比不到16)相比,是相当有利的。此外,从月壤中提取1吨氦-3,还可以得到约6300吨的氢、70吨的氮和1600吨碳。这些副产品对维持月球永久基地来说,也是必要的。俄罗斯科学家加利莫夫认为,每年人类只需发射2到3艘载重100吨的宇宙飞船,从月球上运回的氦-3即可供全人类作为替代能源使用1年,而它的运输费用只相当于目前核能发电的几十分之一。据加利莫夫介绍,如果人类目前就开始着手实施从月球开采氦-3的计划,大约30年到40年后,人类将实现月球氦-3的实地开采并将其运回地面,该计划总似的费用将在2500亿到3000亿美元之间。 氦-3的分离方法氦-3等同位素气体的分离主要方法有气体扩散法离子交换法、气体离心法,另外还有蒸馏法、电解法、电磁法、电流法等,其中以气体扩散法最成熟。“浓缩”的使用涉及旨在提高某一元素特定同位素丰度的同位素分离过程,例如从天然铀生产浓缩铀或从普通水生产重水。 气体扩散法——这是商业开发的第一个浓缩方法。该工艺依靠不同质量的同位素在转化为气态时运动速率的差异。在每一个气体扩散级,当高压气体透过在级联中顺序安装的多孔镍膜时,其轻分子气体的气体更快地通过多孔膜壁。这种泵送过程耗电量很大。已通过膜管的气体随后被泵送到下一级,而留在膜管中的气体则返回到较低级进行再循环。在每一级中,浓度比仅略有增加。浓缩到反应堆级的铀-235丰度需要1000级以上。 气体离心法——在这类工艺中,气体被压缩通过一系列高速旋转的圆筒,或离心机。同位素重分子气体比轻分子气体更容易在圆筒的近壁处得到富集。在近轴处富集的气体被导出,并输送到另一台离心机进一步分离。随着气体穿过一系列离心机,其同位素分子被逐渐富集。与气体扩散法相比,气体离心法所需的电能要小很多,因此该法已被大多数新浓缩厂所采用。 |
随便看 |
|
百科全书收录4421916条中文百科知识,基本涵盖了大多数领域的百科知识,是一部内容开放、自由的电子版百科全书。