词条 | 归一化方法 |
释义 | 归一化方法有两种形式,一种是把数变为(0,1)之间的小数,一种是把有量纲表达式变为无量纲表达式。 1、把数变为(0,1)之间的小数主要是为了数据处理方便提出来的,把数据映射到0~1范围之内处理,更加便捷快速,应该归到数字信号处理范畴之内。 例1:{2.5 3.5 0.5 1.5}归一化后变成了{0.3125 0.4375 0.0625 0.1875}解:2.5+3.5+0.5+1.5=8, 2.5/8=0.3125, 3.5/8=0.4375, 0.5/8=0.0625, 1.5/8=0.1875. 这个归一化就是将括号里面的总和变成1.然后写出每个数的比例。 2、把有量纲表达式变为无量纲表达式归一化是一种简化计算的方式,即将有量纲的表达式,经过变换,化为无量纲的表达式,成为纯量。 比如,复数阻抗可以归一化书写:Z = R + jωL = R(1 + jωL/R) ,复数部分变成了纯数量了,没有量纲。 另外,微波之中也就是电路分析、信号系统、电磁波传输等,有很多运算都可以如此处理,既保证了运算的便捷,又能凸现出物理量的本质含义。 1、线性函数转换,表达式如下: y=(x-MinValue)/(MaxValue-MinValue) 说明:x、y分别为转换前、后的值,MaxValue、MinValue分别为样本的最大值和最小值。 2、对数函数转换,表达式如下: y=log10(x) 说明:以10为底的对数函数转换。 3、反余切函数转换,表达式如下: y=atan(x)*2/PI 4、式(1)将输入值换算为[-1,1]区间的值,在输出层用式(2)换算回初始值,其中 和分别表示训练样本集中负荷的最大值和最小值。 在统计学中,归一化的具体作用是归纳统一样本的统计分布性。归一化在0-1之间是统计的概率分布,归一化在-1--+1之间是统计的坐标分布。 |
随便看 |
百科全书收录4421916条中文百科知识,基本涵盖了大多数领域的百科知识,是一部内容开放、自由的电子版百科全书。