词条 | 功率谱 |
释义 | 功率谱估计是数字信号处理的主要内容之一,主要研究信号在频域中的各种特征,目的是根据有限数据在频域内提取被淹没在噪声中的有用信号。下面对谱估计的发展过程做简要回顾: 英国科学家牛顿最早给出了“谱”的概念。后来,1822年,法国工程师傅立叶提出了著名的傅立叶谐波分析理论。该理论至今依然是进行信号分析和信号处理的理论基础。 简介傅立叶级数提出后,首先在人们观测自然界中的周期现象时得到应用。19世纪末,Schuster提出用傅立叶级数的幅度平方作为函数中功率的度量,并将其命名为“周期图”(periodogram)。这是经典谱估计的最早提法,这种提法至今仍然被沿用,只不过现在是用快速傅立叶变换(FFT)来计算离散傅立叶变换(DFT),用DFT的幅度平方作为信号中功率的度量。 分析周期图较差的方差性能促使人们研究另外的分析方法。1927年,Yule提出用线性回归方程来模拟一个时间序列。Yule的工作实际上成了现代谱估计中最重要的方法——参数模型法谱估计的基础。 Walker利用Yule的分析方法研究了衰减正弦时间序列,得出Yule-Walker方程,可以说,Yule和Walker都是开拓自回归模型的先锋。 定理1930年,著名控制理论专家Wiener在他的著作中首次精确定义了一个随机过程的自相关函数及功率谱密度,并把谱分析建立在随机过程统计特征的基础上,即,“功率谱密度是随机过程二阶统计量自相关函数的傅立叶变换”,这就是Wiener—Khintchine定理。该定理把功率谱密度定义为频率的连续函数,而不再像以前定义为离散的谐波频率的函数。 1949年,Tukey根据Wiener—Khintchine定理提出了对有限长数据进行谱估计的自相关法,即利用有限长数据估计自相关函数,再对该自相关函数求傅立叶变换,从而得到谱的估计。1958年, Blackman和Tukey在出版的有关经典谱估计的专著中讨论了自相关谱估计法,所以自相关法又叫BT法。 周期图法和自相关法都可用快速傅立叶变换算法来实现,且物理概念明确,因而仍是目前较常用的谱估计方法。 1948年,Bartlett首次提出了用自回归模型系数计算功率谱。自回归模型和线性预测都用到了1911年提出的Toeplitz矩阵结构,Levinson曾根据该矩阵的特点于1947年提出了解Yule-Walker的快速计算方法。这些工作为现代谱估计的发展打下了良好的理论基础。 1965年,Cooley和Tukey提出的FFT算法,也促进了谱估计的迅速发展。 现代谱估计主要是针对经典谱估计的分辨率差和方差性能不好的问题而提出的。现代谱估计从方法上大致可分为参数模型谱估计和非参数模型谱估计两种,前者有AR模型、MA模型、ARMA模型、PRONY指数模型等;后者有最小方差方法、多分量的MUSIC方法等。 周期运动周期运动在功率谱中对应尖锋,混沌的特征是谱中出现"噪声背景"和宽锋。它是研究系统从分岔走向混沌的重要方法。 在很多实际问题中(尤其是对非线性电路的研究)常常只给出观测到的离散的时间序列X1, X2, X3,...Xn,那么如何从这些时间序列中提取前述的四种吸引子(零维不动点、一维极限环、二维环面、奇怪吸引子)的不同状态的信息呢? 我们可以运用数学上已经严格证明的结论,即拟合。我们将N个采样值加上周期条件Xn+i=Xi,则自关联函数(即离散卷积)为 然后对Cj完成离散傅氏变换,计算傅氏系数。 Pk说明第k个频率分量对Xi的贡献,这就是功率谱的定义。当采用快速傅氏变换算法后,可直接由Xi作快速傅氏变换,得到系数 然后计算 ,由许多组{Xi}得一批{Pk'},求平均后即趋近前面定义的功率谱Pk。 从功率谱上,四种吸引子是容易区分的,如图12 (a),(b)对应的是周期函数,功率谱是分离的离散谱 (c)对应的是准周期函数,各频率中间的间隔分布不像(b)那样有规律。 (d)图是混沌的功率谱,表现为"噪声背景"及宽锋。 考虑到实际计算中,数据只能取有限个,谱也总以有限分辨度表示出来,从物理实验和数值计算的角度看,一个周期十分长的解和一个混沌解是难于区分的,这也正是功率谱研究的主要弊端。 |
随便看 |
百科全书收录4421916条中文百科知识,基本涵盖了大多数领域的百科知识,是一部内容开放、自由的电子版百科全书。