请输入您要查询的百科知识:

 

词条 辅角公式
释义

辅角公式即αsinx+bcosx:√a^2+b^2 *sin(x+φ)(其中φ角所在象限由a,b的符号决定,φ角的值由tanφ=b/a确定)是我们常用到的一个公式,掌握辅角公式,并能运用辅角公式对三角式进行化简,便于我们求值以及研究三角函数式的相关性质.

对于acosx+bsinx型函数,我们可以如此变形acosx+bsinx=Sqrt(a^2+b^2)(acosx/Sqrt(a^2+b^2)+bsinx/Sqrt(a^2+b^2)),令点(b,a)为某一角φ终边上的点,则sinφ=a/Sqrt(a^2+b^2),cosφ=b/Sqrt(a^2+b^2)

∴acosx+bsinx=Sqrt(a^2+b^2)sin(x+arctan(a/b))

这就是辅角公式.

设要证明的公式为asinA+bcosA=√(a^2+b^2)sin(A+M) (tanM=b/a)

以下是证明过程:

设asinA+bcosA=xsin(A+M)

∴asinA+bcosA=x((a/x)sinA+(b/x)cosA)

由题,(a/x)^2+(b/x)^2=1,cosM=a/x,sinM=b/x

∴x=√(a^2+b^2)

∴asinA+bcosA=√(a^2+b^2)sin(A+M) ,tanM=sinM/cosM=b/a

随便看

 

百科全书收录4421916条中文百科知识,基本涵盖了大多数领域的百科知识,是一部内容开放、自由的电子版百科全书。

 

Copyright © 2004-2023 Cnenc.net All Rights Reserved
更新时间:2024/12/24 1:13:08