词条 | 辅角公式 |
释义 | 辅角公式即αsinx+bcosx:√a^2+b^2 *sin(x+φ)(其中φ角所在象限由a,b的符号决定,φ角的值由tanφ=b/a确定)是我们常用到的一个公式,掌握辅角公式,并能运用辅角公式对三角式进行化简,便于我们求值以及研究三角函数式的相关性质. 对于acosx+bsinx型函数,我们可以如此变形acosx+bsinx=Sqrt(a^2+b^2)(acosx/Sqrt(a^2+b^2)+bsinx/Sqrt(a^2+b^2)),令点(b,a)为某一角φ终边上的点,则sinφ=a/Sqrt(a^2+b^2),cosφ=b/Sqrt(a^2+b^2) ∴acosx+bsinx=Sqrt(a^2+b^2)sin(x+arctan(a/b)) 这就是辅角公式. 设要证明的公式为asinA+bcosA=√(a^2+b^2)sin(A+M) (tanM=b/a) 以下是证明过程: 设asinA+bcosA=xsin(A+M) ∴asinA+bcosA=x((a/x)sinA+(b/x)cosA) 由题,(a/x)^2+(b/x)^2=1,cosM=a/x,sinM=b/x ∴x=√(a^2+b^2) ∴asinA+bcosA=√(a^2+b^2)sin(A+M) ,tanM=sinM/cosM=b/a |
随便看 |
百科全书收录4421916条中文百科知识,基本涵盖了大多数领域的百科知识,是一部内容开放、自由的电子版百科全书。