请输入您要查询的百科知识:

 

词条 方程
释义
1 数学术语

方程(英文:equation)是表示两个数学式(如两个数、函数、量、运算)之间相等关系的一种等式,通常在两者之间有一等号“=”。方程不用按逆向思维思考,可直接列出等式并含有未知数。它具有多种形式,如一元一次方程、二元一次方程等。广泛应用于数学、物理等理科应用题的运算。

基本概念

未知数:通常设x.y.z为未知数,也可以设别的字母,全部字母都可以。一道题中设两个方程未知数不能一样

“元”的概念

宋元时期,中国数学家创立了“天元术”,用“天元”表示未知数进而建立方程。后人们又设立了地元、人元、泰元来表示未知数,有几元便称为几元方程。这种方法的代表作是数学家李冶写的《测圆海镜》(1248),书中所说的“立天元一”相当于现在的“设未知数x。”所以现在在简称方程时,将未知数称为“元”,如一个未知数的方程叫“一元方程”。而两个以上的未知数,在古代又称为“天元”、“地元”、“人元”。

:方程中次的概念和整式的“次”的概念相似。指的是含有未知数的项中,所有未知数指数的总和。而次数最高的项,就是方程的次数。

:方程的解,也叫方程的根。指使等式成立的未知数的值。一般表示为“x=a”,其中x表示未知数,a是一个常数。

解方程:求出方程的解的过程,也可以说是求方程中未知数的值的过程,叫解方程。

方程式或简称方程,是含有未知数的等式。方程中,恒等式叫做恒等方程, ;矛盾式叫做矛盾方程,如 。在未知数等于某特定值时,恰能使等号两边的值相等者称为条件方程,例如 ,在 时等号成立。能使方程左右两边相等的未知数的解叫做方程的解。求出方程的解或说明方程无解的这一过程叫做解方程

方程史话

1. 大约3600年前,古代埃及人写在纸草上的数学问题中,就涉及了含有未知数的等式。

2. 公元825年左右,中亚细亚的数学家阿尔-花拉子米曾写过一本名叫《对消与还原》的书,重点讨论方程的解法。

2. 九章算术之一。

《后汉书·马严传》“善《九章筭术》” 唐 李贤注:“ 刘徽《九章算术》曰《方田》第一,《粟米》第二,《差分》第三,《少广》第四,《商功》第五,《均输》第六,《盈不足》第七,《方程》第八,《句股》(又作《勾股》)第九。”《九章算术·方程》 白尚恕注释:“‘方’即方形,‘程’即表达相课的意思,或者是表达式。於某一问题中,如有含若干个相关的数据,将这些相关的数据并肩排列成方形,则称为‘方程’。所谓‘方程’即现今的增广矩阵。”

3. “元”的概念:

宋元时期,中国数学家创立了“天元术”,用“天元”表示未知数进而建立方程。这种方法的代表作是数学家李冶写的《测圆海镜》(1248),书中所说的“立天元一”相当于现在的“设未知数x。”所以现在在简称方程时,将未知数称为“元”,如一个未知数的方程叫“一元方程”。而两个以上的未知数,在古代又称为“天元”、“地元”、“人元”。

数学术语

含有未知数等式叫方程,这是中学中的逻辑定义,方程的定义还有函数定义法,关系定义,而含未知数的等式不一定是方程,如0x=0就不是方程,应该这样定义:

形如f(x1,x2,x3......xn)=g(x1,x2,x3......xn)的等式,其中f(x1,x2,x3......xn)和g(x1,x2,x3......xn)是在定义域的交集内研究的两个解析式,且至少有一的不是常数

等式的基本性质1

等式两边同时加(或减)同一个数或同一个代数式,所得的结果仍是等式。用字母表示为:若a=b,c为一个数或一个代数式。则:(1)a+c=b+c(2)a-c=b-c

等式的基本性质2

等式的两边同时乘或除以同一个不为0的数所得的结果仍是等式。

(3)若a=b,则b=a(等式的对称性)。

(4)若a=b,b=c则a=c(等式的传递性)。

用字母表示为:若a=b,c为一个数或一个代数式(不为0)。则:

a×c=b×c a÷c=b÷c

【方程的一些概念】

方程的解:使方程左右两边相等的未知数的值叫做方程的解。

解方程:求方程的解的过程叫做解方程。

解方程的依据:1.移项; 2.等式的基本性质; 3.合并同类项; 4. 加减乘除各部分间的关系。

解方程的步骤:1.能计算的先计算; 2.转化——计算——结果

例如:

3x=5×6

3x=30

x=30÷3

x=10

移项:把方程中的某些项改变符号后,从方程的一边移到另一边,这种变形叫做移项,根据是等式的基本性质1。

方程有整式方程和分式方程。

整式方程:方程的两边都是关于未知数的整式的方程叫做整式方程。

分式方程:分母中含有未知数的方程叫做分式方程。

一元一次方程

人教版5年级数学上册第四章会学到,冀教版5年级数学下册第三章会学到,北师大版7年级上册第五章

苏教版5年级下第一章

定义

只含有一个未知数,且未知数次数是一的整式方程叫一元一次方程(linear equation with one unknown)。通常形式是kx+b=0(k,b为常数,且k≠0)

一般解法步骤

⒈去分母 方程两边同时乘各分母的最小公倍数。

⒉去括号 一般先去小括号,再去中括号,最后去大括号。但顺序有时可依据情况而定使计算简便。可根据乘法分配律。

⒊移项 把方程中含有未知数的项移到方程的另一边,其余各项移到方程的另一边移项时别忘记了要变号。(一般都是这样:(比方)从 5x=4x+8 得到 5x - 4x=8 ;把未知数移到一起!~

⒋合并同类项 将原方程化为ax=b(a≠0)的形式。

⒌系数化一 方程两边同时除以未知数的系数。

⒍得出方程的解。

同解方程

如果两个方程的解相同,那么这两个方程叫做同解方程。

方程的同解原理:

⒈方程的两边都加或减同一个数或同一个等式所得的方程与原方程是同解方程。

⒉方程的两边同乘或同除同一个不为0的数所得的方程与原方程是同解方程。

做一元一次方程应用题的重要方法:

⒈认真审题

⒉分析已知和未知的量

⒊找一个等量关系

⒋设未知数

⒌列方程

⒍解方程

⒎检验

⒏写出答

教学设计示例

教学目标

1.使学生初步掌握一元一次方程解简单应用题的方法和步骤;并会列出一元一次方程解简单的应用题

2.培养学生观察能力,提高他们分析问题和解决问题的能力

3.使学生初步养成正确思考问题的良好习惯.

教学重点和难点

一元一次方程解简单的应用题的方法和步骤.

课堂教学过程设计

一、从学生原有的认知结构提出问题

在小学算术中,我们学习了用算术方法解决实际问题的有关知识,那么,一个实际问题能否应用一元一次方程来解决呢?若能解决,怎样解?用一元一次方程解应用题与用算术方法解应用题相比较,它有什么优越性呢?

为了回答上述这几个问题,我们来看下面这个例题.

例1 某数的3倍减2等于某数与4的和,求某数.

(首先,用算术方法解,由学生回答,教师板书)

解法1:(4+2)÷(3-1)=3.

答:某数为3.

(其次,用代数方法来解,教师引导,学生口述完成)

解法2:设某数为x,则有3x-2=x+4.

3x-2=x+4

(3-1)x=2+4

2x=2+4

2x=6

x=6÷2

x=3

解之,得x=3.

答:某数为3.

纵观例1的这两种解法,很明显,算术方法不易思考,而应用设未知数,列出方程并通过解方程求得应用题的解的方法,有一种化难为易之感,这就是我们学习运用一元一次方程解应用题的目的之一.

我们知道方程是一个含有未知数的等式,而等式表示了一个相等关系.因此对于任何一个应用题中提供的条件,应首先从中找出一个相等关系,然后再将这个相等关系表示成方程.

本节课,我们就通过实例来说明怎样寻找一个相等的关系和把这个相等关系转化为方程的方法和步骤.

二、师生共同分析、研究一元一次方程解简单应用题的方法和步骤

例2 某面粉仓库存放的面粉运出 15%后,还剩余42 500千克,这个仓库原来有多少面粉?

师生共同分析:

1.本题中给出的已知量和未知量各是什么?

2.已知量与未知量之间存在着怎样的相等关系?(原来重量-运出重量=剩余重量)

3.若设原来面粉有x千克,则运出面粉可表示为多少千克?利用上述相等关系,如何布列方程?

上述分析过程可列表如下:

解:设原来有x千克面粉,那么运出了15%x千克,由题意,得x-15%x=42 500,

x-15%x=42 500

(1-15%)x=42 500

85%x=42 500

x=42 500÷85%

x=50 000

所以 x=50 000.

答:原来有 50 000千克面粉.

此时,让学生讨论:本题的相等关系除了上述表达形式以外,是否还有其他表达形式?若有,是什么?

(还有,原来重量=运出重量+剩余重量;原来重量-剩余重量=运出重量)

教师应指出:(1)这两种相等关系的表达形式与“原来重量-运出重量=剩余重量”,虽形式上不同,但实质是一样的,可以任意选择其中的一个相等关系来列方程

(2)例2的解方程过程较为简捷,同学应注意模仿.

依据例2的分析与解答过程,首先请同学们思考列一元一次方程解应用题的方法和步骤;然后,采取提问的方式,进行反馈;最后,根据学生总结的情况,教师总结如下:

(1)仔细审题,透彻理解题意.即弄清已知量、未知量及其相互关系,并用字母(如x)表示题中的一个合理未知数

(2)根据题意找出能够表示应用题全部含义的一个相等关系.(这是关键一步)

(3)根据相等关系,正确列出方程.即所列的方程应满足两边的量要相等;方程两边的代数式的单位要相同;题中条件应充分利用,不能漏也不能将一个条件重复利用等

(4)求出所列方程的解

(5)检验后明确地、完整地写出答案.这里要求的检验应是,检验所求出的解既能使方程成立,又能使应用题有意义.

二元一次方程(组)

定义

人教版7年级数学下册第四章会学到,冀教版7年级数学下册第九章会学到。

二元一次方程定义:一个含有两个未知数,并且未知数的指数都是1的整式方程,叫二元一次方程(linear equation of two unknowns)。

二元一次方程组定义:由两个二元一次方程组成的方程组,叫二元一次方程组(system of linear equation of two unknowns)。

二元一次方程的解:使二元一次方程两边的值相等的两个未知数的值,叫做二元一次方程的解。

二元一次方程组的解:二元一次方程组的两个公共解,叫做二元一次方程组的解。

一般解法,消元:将方程组中的未知数个数由多化少,逐一解决。

消元的方法有两种:

代入消元法

例:解方程组x+y=5① 6x+13y=89②

解:由①得x=5-y③ 把③带入②,得6(5-y)+13y=89,解得y=59/7

把y=59/7带入③,得x=5-59/7,即x=-24/7

x=-24/7,y=59/7

这种解法就是代入消元法。

加减消元法

例:解方程组x+y=9① x-y=5②

解:①+②,得2x=14,即x=7

把x=7带入①,得7+y=9,解得y=2

x=7,y=2

这种解法就是加减消元法。

二元一次方程组的解有三种情况

1.有一组解

如方程组x+y=5① 6x+13y=89②的解为x=-24/7,y=59/7。

2.有无数组解

如方程组x+y=6① 2x+2y=12②,因为这两个方程实际上是一个方程(亦称作“方程有两个相等的实数根”),所以此类方程组有无数组解。

3.无解

如方程组x+y=4① 2x+2y=10②,因为方程②化简后为x+y=5,这与方程①相矛盾,所以此类方程组无解。

三元一次方程

定义

与二元一次方程类似,三个结合在一起的共含有三个未知数的一次方程。

三元一次方程组的解法

与二元一次方程类似,利用消元法逐步消元。

典型题析

某地区为了鼓励节约用水,对自来水的收费标准作如下规定:每月每户用水不超过10吨按0.9元/吨收费;超过10吨而不超过20吨按1.6元/吨收费;超过20吨的部分按2.4元/吨收费。某月甲用户比乙用户多缴水费16元,乙用户比丙用户多缴水费7.5元。已知丙用户用水不到10吨,乙用户用水超过10吨但不到20吨.问:甲。乙.丙三用户该月各缴水费多少元(按整吨计算收费)?

解:设甲用水x吨,乙用水y吨,丙用水z吨

显然,甲用户用水超过了20吨

故甲缴费:0.9*10+1.6*10+2.4*(x-20)=2.4x-23

乙缴费:0.9*10+1.6*(y-10)=1.6y-7

丙缴费:0.9z

2.4x-23=1.6y-7+16

1.6y-7=0.9z+7.5

化简得

3x-2y=40……(1)

16y-9z=145……(2)

由(1)得x=(2y+40)/3

所以设y=1+3k,3<k<7

当k=4,y=13,x=22,代入(2)求得z=7

当k=5,y=16,代入(2),z没整数解

当k=6,y=19,代入(2),z没整数解

所以甲用水22吨,乙用水13吨,丙用水7吨

甲用水29.8元,乙用水13.8元,丙用水6.3元</CA>

n元一次方程

消元法

设方程组①:

a11 x1+a12 x2+a13 x3+…+a1n xn=b1(1)

a21 x1+a12 x2+a23 x3+…+a2n xn=b2(2)

……………………

ai1 x1+ai2 x2+ai3 x3+…+ain xn=bi(i)

……………………

am1 x1+am2 x2+am3 x3+…+amn xn=bm(m)

把方程(1)×(-i1/a1)加到(i)上,再把方程(2)×(-i2/a2)加到(i)上,以此类推。(i∈N且i∈[1,m])最后,方程组变为:②

b11 x1+b12 x2+b13 x3+…+b1n xn=c1

b22 x2+b13 x3+…+b2n xn=c2

………………

brn xn=cr

0=c r+1

0=0

0=0

………… (bii≠0,i=1,2,…r)

最后的许多0=0可以舍去,不影响方程的解。可以分三种情况:

(1)c r+1 ≠0

此时,满足前r各方程的任意一个解,都不能满足0=c r+1这个方程,所以②无解,所以①也无解

当c r+1=0时,又分两种情况:

(2)r=n

因为bii≠0,所以从最后一个方程可解出xn。然后代入第r-1个方程,解出x n-1。如此类推,可得出方程组②的唯一解,就是方程组①的唯一解。

(3)r<n

可把方程组该成他的同解方程组③:

b11 x1+b12 x2+b13 x3+…+b1r xr=c1-b1,r+1 x r+1-…-b1n xn

b22 x2+b13 x3+…+b2n xr=c2-b2,r+1 x r+1-…-b2n xn

………………

brr xr=cr-br,r+1 x r+1-…-brn xn

设等号后面的数是已知数,按照(2)的方法来解,可解得:

x1=d11 x r+1+d12 x r+2+…+d1,n-r xn

x2=d21 x r+1+d22 x r+2+…+d1,n-r xn

………………

xr=dr1 x r+1+dr2 xr+2+…+dr,n-r xn

令自由未知量xr+i=ki(i∈N且i∈[1,n-r])可得方程组的全部解:

x1=d11 k1+d12 k2+…+ d1,n-r kn-r

x2=d21 k1+d22 k2+…+d1,n-r kn-r

………………

xr=dr1 k1+dr2 k2+…+dr,n-r kn-r

x r+1=k1

x r+2=k2

…………

xn=kn-r

克莱姆法则

(此法只适用于m=n且D≠0的方程组)

设系数行列式D=∣a ij∣,Di是D把i列换成结果的行列式

那么xi=Di/D(i∈N且i∈[1,n])

矩阵和向量解法

矩阵解法即把方程组①的增广矩阵进行初等行变化。

向量解法即把方程组①改写成Ax=b的形式。

先求出方程组的特解η,然后求其对应导出组Ax=0的解ξ1,ξ2,…,ξn。

方程组的解为:η+c1ξ1+c2ξ2+…+cnξn。

一元二次方程

定义

含有一个未知数,并且未知数的最高次数是2的整式方程,这样的方程叫做一元二次方程(quadratic equation in one unknown)。

由一次方程到二次方程是个质的转变,通常情况下,二次方程无论是在概念上还是解法上都比一次方程要复杂得多。

一般形式:ax^2+bx+c=0 (a≠0)

一般解法有四种:

⒈公式法(直接开平方法)

⒉配方法

3.因式分解法

4.十字相乘法

十字相乘法能把某些二次三项式分解因式。这种方法的关键是把二次项系数a分解成两个因数a1,a2的积a1?a2,把常数项c分解成两个因数c1,c2的积c1?c2,并使a1c2+a2c1正好是一次项b,那么可以直接写成结果:在运用这种方法分解因式时,要注意观察,尝试,并体会它实质是二项式乘法的逆过程。当首项系数不是1时,往往需要多次试验,务必注意各项系数的符号。

例题

例1 把2x^2-7x+3分解因式。

分析:先分解二次项系数,分别写在十字交叉线的左上角和左下角,再分解常数项,分

别写在十字交叉线的右上角和右下角,然后交叉相乘,求代数和,使其等于一次项系数.

分解二次项系数(只取正因数):

2=1×2=2×1;

分解常数项:

3=1×3=3×1=(-3)×(-1)=(-1)×(-3).

用画十字交叉线方法表示下列四种情况:

1 1

2 3

1×3+2×1

=5

1 3

2 1

1×1+2×3

=7

1 -1

2 -3

1×(-3)+2×(-1)

=-5

1 -3

2 -1

1×(-1)+2×(-3)

=-7

经过观察,第四种情况是正确的,这是因为交叉相乘后,两项代数和恰等于一次项系数-7.

解 2x^2-7x+3=(x-3)(2x-1).

一般地,对于二次三项式ax2+bx+c(a≠0),如果二次项系数a可以分解成两个因数之积,即a=a1a2,常数项c可以分解成两个因数之积,即c=c1c2,把a1,a2,c1,c2,排列如下:

a1 c1

? ╳

a2 c2

a1c2+a2c1

按斜线交叉相乘,再相加,得到a1c2+a2c1,若它正好等于二次三项式ax2+bx+c的一次项系数b,即a1c2+a2c1=b,那么二次三项式就可以分解为两个因式a1x+c1与a2x+c2之积,即

ax2+bx+c=(a1x+c1)(a2x+c2).

像这种借助画十字交叉线分解系数,从而帮助我们把二次三项式分解因式的方法,通常叫做十字相乘法。

例2 把6x^2-7x-5分解因式.

分析:按照例1的方法,分解二次项系数6及常数项-5,把它们分别排列,可有8种不同的排列方法,其中的一种

2 1

3 -5

2×(-5)+3×1=-7

是正确的,因此原多项式可以用十字相乘法分解因式。

解 6x^2-7x-5=(2x+1)(3x-5)

指出:通过例1和例2可以看到,运用十字相乘法把一个二次项系数不是1的二次三项式因式分解,往往要经过多次观察,才能确定是否可以用十字相乘法分解因式.

对于二次项系数是1的二次三项式,也可以用十字相乘法分解因式,这时只需考虑如何把常数项分解因数。例如把x^2+2x-15分解因式,十字相乘法是

1 -3

1 5

1×5+1×(-3)=2

所以x^2+2x-15=(x-3)(x+5).

例3 把5x^2+6xy-8y^2分解因式。

分析:这个多项式可以看作是关于x的二次三项式,把-8y^2看作常数项,在分解二次项及常数项系数时,只需分解5与-8,用十字交叉线分解后,经过观察,选取合适的一组,即

1 2

?╳

5 -4

1×(-4)+5×2=6

解 5x^2+6xy-8y^2=(x+2y)(5x-4y).

指出:原式分解为两个关于x,y的一次式。

例4 把(x-y)(2x-2y-3)-2分解因式.

分析:这个多项式是两个因式之积与另一个因数之差的形式,只有先进行多项式的乘法运算,把变形后的多项式再因式分解。

问:两上乘积的因式是什么特点,用什么方法进行多项式的乘法运算最简便?

答:第二个因式中的前两项如果提出公因式2,就变为2(x-y),它是第一个因式的二倍,然后把(x-y)看作一个整体进行乘法运算,可把原多项式变形为关于(x-y)的二次三项式,就可以用十字相乘法分解因式了.

解 (x-y)(2x-2y-3)-2

=(x-y)[2(x-y)-3]-2

=2(x-y) ^2-3(x-y)-2

=[(x-y)-2][2(x-y)+1]

=(x-y-2)(2x-2y+1).

1 -2

2 1

1×1+2×(-2)=-3

指出:把(x-y)看作一个整体进行因式分解,这又是运用了数学中的“整体”思想方法。

例5 x^2+2x-15

分析:常数项(-15)<0,可分解成异号两数的积,可分解为(-1)(15),或(1)(-15)或(3)

(-5)或(-3)(5),其中只有(-3)(5)中-3和5的和为2。

=(x-3)(x+5)

总结:①x^2+(p+q)x+pq型的式子的因式分解

这类二次三项式的特点是:二次项的系数是1;常数项是两个数的积;一次项系数是常数项的两个因数的和.因此,可以直接将某些二次项的系数是1的二次三项式因式分解: x^2+(p+q)x+pq=(x+p)(x+q)

②kx^2+mx+n型的式子的因式分解

如果能够分解成k=ac,n=bd,且有ad+bc=m 时,那么

kx^2+mx+n=(ax+b)(cx+d)

a b

c d

1.直接开平方法:

直接开平方法就是用直接开平方求解一元二次方程的方法。用直接开平方法解形如(x-m)^2=n (n≥0)的

方程,其解为x=m± √n.

例1.解方程(1)(3x+1)2=7 (2)9x2-24x+16=11

分析:(1)此方程显然用直接开平方法好做,(2)方程左边是完全平方式(3x-4)2,右边=11>0,所以

此方程也可用直接开平方法解。

(1)解:(3x+1)2=7×

∴(3x+1)2=5

∴3x+1=±(注意不要丢解)

∴x=

∴原方程的解为x1=,x2=

(2)解: 9x2-24x+16=11

∴(3x-4)2=11

∴3x-4=±

∴x=

∴原方程的解为x1=,x2=

2.配方法:用配方法解方程ax2+bx+c=0 (a≠0)

先将常数c移到方程右边:ax2+bx=-c

将二次项系数化为1:x2+x=-

方程两边分别加上一次项系数的一半的平方:x2+x+( )2=- +( )2

方程左边成为一个完全平方式:(x+ )2=

当b2-4ac≥0时,x+ =±

∴x=(这就是求根公式)

例2.用配方法解方程 3x2-4x-2=0

解:将常数项移到方程右边 3x2-4x=2

将二次项系数化为1:x2-x=

方程两边都加上一次项系数一半的平方:x2-x+( )2= +( )2

配方:(x-)2=

直接开平方得:x-=±

∴x=

∴原方程的解为x1=,x2= .

3.公式法:把一元二次方程化成一般形式,然后计算判别式△=b2-4ac的值,当b2-4ac<0时,无解;方程当b2-4ac≥0时,把各项系数a, b, c的值代入求根公式xx=[-b±√(b^2-4ac)]/2a就可得到方程的根。

例3.用公式法解方程 2x2-8x=-5

解:将方程化为一般形式:2x2-8x+5=0

∴a=2, b=-8, c=5

b2-4ac=(-8)2-4×2×5=64-40=24>0

∴x= = =

∴原方程的解为x1=,x2= .

4.因式分解法:把方程变形为一边是零,把另一边的二次三项式分解成两个一次因式的积的形式,让

两个一次因式分别等于零,得到两个一元一次方程,解这两个一元一次方程所得到的根,就是原方程的两个

根。这种解一元二次方程的方法叫做因式分解法。

例4.用因式分解法解下列方程:

(1) (x+3)(x-6)=-8 (2) 2x2+3x=0

(3) 6x2+5x-50=0 (选学) (4)x2-2( + )x+4=0 (选学)

(1)解:(x+3)(x-6)=-8 化简整理得

x2-3x-10=0 (方程左边为二次三项式,右边为零)

(x-5)(x+2)=0 (方程左边分解因式)

∴x-5=0或x+2=0 (转化成两个一元一次方程)

∴x1=5,x2=-2是原方程的解。

(2)解:2x2+3x=0

x(2x+3)=0 (用提公因式法将方程左边分解因式)

∴x=0或2x+3=0 (转化成两个一元一次方程)

∴x1=0,x2=-是原方程的解。

注意:有些同学做这种题目时容易丢掉x=0这个解,应记住一元二次方程有两个解。

(3)解:6x2+5x-50=0

(2x-5)(3x+10)=0 (十字相乘分解因式时要特别注意符号不要出错)

∴2x-5=0或3x+10=0

∴x1=, x2=- 是原方程的解。

(4)解:x2-2(+ )x+4 =0 (∵4 可分解为2 ·2 ,∴此题可用因式分解法)

(x-2)(x-2 )=0

∴x1=2 ,x2=2是原方程的解。

5.十字相乘法

可对形如y=x^2+(p+q)x+pq型的式子的因式分解

这类二次三项式的特点是:二次项的系数是1;常数项是两个数的积;一次项系数是常数项的两个因数的和。因此,可以直接将某些二次项的系数是1的二次三项式因式分解: x^2+(p+q)x+pq=(x+p)(x+q)

二元二次方程:含有两个未知数且未知数的最高次数为2的整式方程

一元五次方程

一元五次方程没有解

从方程的根式解法发展过程来看,早在古巴比伦数学和印度数学的记载中,他们就能够用根式求解一元二次方程ax2+bx+c=0,给出的解相当于+,,这是对系数函数求平方根。接着古希腊人和古东方人又解决了某些特殊的三次数字方程,但没有得到三次方程的一般解法。这个问题直到文艺复兴的极盛期(即16世纪初)才由意大利人解决。他们对一般的三次方程x3+ax2+bx+c=0,由卡丹公式解出根 x= + ,其中p = ba2,q = a3,显然它是由系数的函数开三次方所得。同一时期,意大利人费尔拉里又求解出一般四次方程x4+ax3+bx2+cx+d=0的根是由系数的函数开四次方所得。

用根式求解四次或四次以下方程的问题在16世纪已获得圆满解决,但是在以后的几个世纪里,探寻五次和五次以上方程的一般公式解法却一直没有得到结果。1770年前后,法国数学家拉格朗日转变代数的思维方法,提出方程根的排列与置换理论是解代数方程的关键所在,并利用拉格朗日预解式方法,即利用1的任意n次单位根 ( n =1)引进了预解式x1+ x2+ 2x3+…+ n-1xn,详细分析了二、三、四次方程的根式解法。他的工作有力地促进了代数方程论的进步。但是他的这种方法却不能对一般五次方程作根式解,于是他怀疑五次方程无根式解。并且他在寻求一般n次方程的代数解法时也遭失败,从而认识到一般的四次以上代数方程不可能有根式解。他的这种思维方法和研究根的置换方法给后人以启示。

1799年,鲁菲尼证明了五次以上方程的预解式不可能是四次以下的,从而转证五次以上方程是不可用根式求解的,但他的证明不完善。同年,德国数学家高斯开辟了一个新方法,在证明代数基本理论时,他不去计算一个根,而是证明它的存在。随后,他又着手探讨高次方程的具体解法。在1801年,他解决了分圆方程xp-1=0(p为质数)可用根式求解,这表明并非所有高次方程不能用根式求解。因此,可用根式求解的是所有高次方程还是部分高次方程的问题需进一步查明。

随后,挪威数学家阿贝尔开始解决这个问题。1824年到1826年,阿贝尔着手考察可用根式求解的方程的根具有什么性质,于是他修正了鲁菲尼证明中的缺陷,严格证明:如果一个方程可以根式求解,则出现在根的表达式中的每个根式都可表示成方程的根和某些单位根的有理数。并且利用这个定理又证明出了阿贝尔定理:一般高于四次的方程不可能代数地求解。接着他进一步思考哪些特殊的高次方程才可用根式解的问题。在高斯分圆方程可解性理论的基础上,他解决了任意次的一类特殊方程的可解性问题,发现这类特殊方程的特点是一个方程的全部根都是其中一个根(假设为x)的有理函数,并且任意两个根q1(x)与q2(x)满足q1q2(x)=q2q1(x),q1,q2为有理函数。现在称这种方程为阿贝尔方程。其实在对阿贝尔方程的研究中已经涉及到了群的一些思想和特殊结果,只是阿贝尔没能意识到,也没有明确地构造方程根的置换集合(因为若方程所有的根都用根x1来表示成有理函数qj(x1),j=1,2,3,…,n,当用另一个根xi代替x1时,其中1〈i≤n ,那么qj(xi)是以不同顺序排列的原方程的根,j=1,2,…,n。实际上应说根xi=q1(xi),q2(xi),…,qn(xi)是根x1,x2,…,xn的一个置换),而仅仅考虑可交换性q1q2(x)=q2q1(x)来证明方程只要满足这种性质,便可简化为低次的辅助方程,辅助方程可依次用根式求解。

阿贝尔解决了构造任意次数的代数可解的方程的问题,却没能解决判定已知方程是否可用根式求解的问题。法国数学家伽罗瓦正是处在这样的背景下,开始接手阿贝尔未竞的事业。

伽罗瓦在证明不存在一个五次或高于五次的方程的一般根式解法时,与拉格朗日相同,也从方程根的置换入手。当他系统地研究了方程根的排列置换性质后,提出了一些确定的准则以判定一个已知方程的解是否能通过根式找到,然而这些方法恰好导致他去考虑一种称之为“群”的元素集合的抽象代数理论。在1831年的论文中,伽罗瓦首次提出了“群”这一术语,把具有封闭性的置换的集合称为群,首次定义了置换群的概念。他认为了解置换群是解决方程理论的关键,方程是一个其对称性可用群的性质描述的系统。他从此开始把方程论问题转化为群论的问题来解决,直接研究群论。他引入了不少有关群论的新概念,从而也产生了他自己的伽罗瓦群论,因此后人都称他为群论的创始人。

对有理系数的n次方程 x+axn-1+a2xn-2+…+an-1x+an=0 (1)

假设它的n个根x1,x2,…,xn的每一个变换叫做一个置换,n个根共有n!个可能的置换,它们的集合关于置换的乘法构成一个群,是根的置换群。方程的可解性可以在根的置换群的某些性质中有所反映,于是伽罗瓦把代数方程可解性问题转化为与相关的置换群及其子群性质的分析问题。现在把与方程联系起的置换群(它表现了方程的对称性质)称为伽罗瓦群,它是在某方程系数域中的群。一个方程的伽罗瓦群是对于每一个其函数值为有理数的关于根的多项式函数都满足这个要求的最大置换群,也可以说成对于任一个取有理数值的关于根的多项式函数,伽罗瓦群中的每个置换都使这函数的值不变。伽罗瓦创立群论是为了应用于方程论,但他并不局限于此,而是把群论进行了推广,作用于其他研究领域。可惜的是,伽罗瓦群论的理论毕竟太深奥,对十九世纪初的人们来说是很难理解的,连当时的数学大师都不能理解他的数学思想和他的工作的实质,以至他的论文得不到发表。更不幸的是伽罗瓦在二十一岁时便因一场愚蠢的决斗而早逝,我们不得不为这位天才感到惋惜。到十九世纪六十年代,他的理论才终于为人们所理解和接受。

伽罗瓦群理论被公认为十九世纪最杰出的数学成就之一。他给方程可解性问题提供了全面而透彻的解答,解决了困扰数学家们长达数百年之久的问题。伽罗瓦群论还给出了判断几何图形能否用直尺和圆规作图的一般判别法,圆满解决了三等分任意角或倍立方体的问题都是不可解的。最重要的是,群论开辟了全新的研究领域,以结构研究代替计算,把从偏重计算研究的思维方式转变为用结构观念研究的思维方式,并把数学运算归类,使群论迅速发展成为一门崭新的数学分支,对近世代数的形成和发展产生了巨大影响。同时这种理论对于物理学、化学的发展,甚至对于二十世纪结构主义哲学的产生和发展都发生了巨大的影响。

再次引发争论

2009年7月1日,由石泉、郑良飞编写的《一元五次方程破解》引起了数学界的高度关注。由于一元五次方程没有根式解早已被西方科学家证明,如果其理论成立,将无疑是对数学界的一次不小的冲击。以下是该书的介绍:

本书主要介绍一元五次方程的解法。对于一般的一元五次方程可归结为一元五次方程(1)~(16)(任意实系数、实系数≤1、复系数),其中有一般的、有结构的、有缺项的等16种类型方程,以及包括性质1~性质17的各种方程,这是一元五次方程全部方程。

数学史业已查明,1824年、1829年,阿贝尔(挪威)、伽罗瓦(法国)都证明了五次以上的代数方程不能用根式解的文章公布于世已有100多年的历史了,这是国内外数学界人士所共认的,至今还是无人问津。

作者却不以为然,为了给祖国争光,攀登科学高峰,破除迷信,解放思想,经过多年的研究,终于给出了解开一元五次方程的核心内容——附录1~附录8。

据此,则把一元五次方程的16种类型方程(任意实系数、实系数≤1、复系数)以及包括性质1~性质17的各种方程全部解开了。

本书第1章阐述一元五次方程破解的根据及其结论。第2章为例题。一元五次方程(1)~(16)(任意实系数、实系数≤1、复系数)及其包括性质1~性质17的方程,都有具体例题,分别予以推演,其推演过程和结论,都是经过逐一检验①——这是确定所求每一方程的五个根(实根和复根)的正确与否的可靠保证。

因此,我们这里解开所有一元五次方程成立与否及其每个例题都是经过检验确定其正确与否,这就等同对此审核其对、错成为定局,不存在什么偏、差、错、漏问题,也不存在什么权威问题。

其他方程

(1)一般式: Ax+By+C=0 (其中A、B不同时为0) 适用于所有直线

两直线平行时:A1/A2=B1/B2≠C1/C2

两直线垂直时:A1A2+B1B2=0

两直线重合时:A1/A2=B1/B2=C1/C2

两直线相交时:A1/A2≠B1/B2

(2)点斜式: 知道直线上一点(x0,y0),并且直线的斜率k存在,则直线可表示为 y-y0=k(x-x0)。当k不存在时,直线可表示为 x=x0

(3)截距式: 若直线与x轴交于(a,0),与y轴交于(0,b),则直线可表示为:x/a+y/b=1。所以不适用于和任意坐标轴垂直的直线和过原点的直线 。

(4)斜截式: y=kx+b (k≠0)

(5)两点式:若直线过任意两点(x1,y1)、(x2,y2),且 x1≠x2,y1≠y2,则直线可以表示为 (y-y1)/(y2-y1)=(x-x1)/(x2-x1)

(6)法线式: x·cosα+ysinα-p=0

附注

一般情况

一般地,n元一次方程就是含有n个未知数,且含未知数项次数是1的方程,一次项系数规定不等于0

n元一次方程组就是几个n元一次方程组成的方程组(一元一次方程除外)

一元a次方程就是含有一个未知数,且含未知数项最高次数是a的方程(一元一次方程除外)

一元a次方程组就是几个一元a次方程组成的方程组(一元一次方程除外)

n元a次方程就是含有n个未知数,且含未知数项最高次数是a的方程(一元一次方程除外)

n元a次方程组就是几个n元a次方程组成的方程组(一元一次方程除外)

方程(组)中,未知数个数大于方程个数的方程(组)叫做不定方程(组),此类方程(组)一般有无数个解。

鸡兔同笼公式

解法1:(兔的脚数×总只数-总脚数)÷(兔的脚数-鸡的脚数)=鸡的只数

总只数-鸡的只数=兔的只数

解法2:( 总脚数-鸡的脚数×总只数)÷(兔的脚数-鸡的脚数) =兔的只数

总只数-兔的只数=鸡的只数

解法3:总脚数÷2—总头数=兔的只数

总只数—兔的只数=鸡的只数

解法4(方程):X=总脚数÷2—总头数(X=兔的只数)

总只数—兔的只数=鸡的只数

解法5(方程):X=(总脚数-鸡的脚数×总只数)÷(兔的脚数-鸡的脚数)(X=兔的只数)

总只数—兔的只数=鸡的只数

解法6(方程):X=(兔的脚数×总只数-总脚数)÷(兔的脚数-鸡的脚数)(X=鸡的只数)

总只数-鸡的只数=兔的只数

用方程解鸡兔同笼问题

若用方程解鸡兔同笼问题,公式为:鸡脚+兔脚=总脚数。

设鸡为x的情况

例笼中共有30只鸡和兔,数一数足数正好是100只。问鸡和兔各有多少只?

解:设鸡为x只,则兔为(30-x)只。

2x+(30-x)×4=100

2x+120-4x=100

120-2x=100

2x=20

x=10

30-10=20(只)

答:鸡和兔各有10只,20只。

设兔为x的情况

例笼中共有鸡兔100只,鸡兔足数共248只。问鸡兔各有多少只?

解:设兔为x只,则鸡为(100-x)只。

4x+(100-x)×2=248

4x+200-2x=248

2x+200=248

2x=48

x=24

100-24=76(只)

答:鸡兔各有76只,24只。

2 盲人作家

方程——盲人作家。本名 董玉明。曾用笔名 九等书生 斯人等。男,一九六九年出生于辽宁省抚顺市。

辽宁省作协会员,抚顺市作协理事,抚顺盲人电脑学会会长。出版诗集《随风而逝》《倾听寂寞》《彼岸》,散文集《心情菩提》,纪实小说《我和我追逐的梦》等多部,并著有长篇心理现实主义小说《海温斯公寓》《末日之侣》《幽灵天使》和长篇推理小说《神秘的金表》,中篇推理悬疑小说《圆形走廊》《上天自有安排》《恐怖街》《结局或开始》《其后》《梦魇》,悬念影视剧《血连环》《你伤害了我》《谎言背后》《情人的眼泪》等,有近二百万字的诗歌小说散文评论散见于各类报刊杂志中,曾策划主编并出版诗集、散文集多部。曾荣获全国盲人优秀作品评选一等奖,全国诗歌创作比赛一、二、三等奖,抚顺晚报十

大写手第一名等奖项。1998年因病导致双目失明,盲残一级,现在使用盲用读屏软件进行创作。曾兼职心理咨询热线,电台及网络文学、心理节目主持人,曾兼职某大型公益网站管理。现为职业撰稿人,主要从事推理犯罪、心理分析类小说及剧本创作,并有数百篇散文、诗歌、评论和影视剧本等。

随便看

 

百科全书收录4421916条中文百科知识,基本涵盖了大多数领域的百科知识,是一部内容开放、自由的电子版百科全书。

 

Copyright © 2004-2023 Cnenc.net All Rights Reserved
更新时间:2025/2/7 15:12:18